

B.Tech-Mechanical Engineering Course Structure

&

SYLLABUS

(2020-21 academic year)

(NECR B.Tech 20)

(w.e.f AY: 2020-21)

NARAYANA ENGINEERING COLLEGE::NELLORE

INSTITUTE VISION & MISSION

VISION

 To be one of the nation's premier Institutions for Technical and Management Education and a key contributor for Technological and Socio-economic Development of the Nation.

MISSION

- To produce technically competent Engineers and Managers by maintaining high academic standards, world class infrastructure and core instructions.
- To enhance innovative skills and multi disciplinary approach of students through well experienced faculty and industry interactions.
- To inculcate global perspective and attitude of students to face real world challenges by developing leadership qualities, lifelong learning abilities and ethical values.

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT VISION & MISSION

VISION OF THE DEPARTMENT

To produce Quality Mechanical Engineers having sound technical knowledge, who would serve effectively as a responsible technocrat to the demanding needs of society.

MISSION OF THE DEPARTMENT

1) To provide Quality education through effective teaching and learning methodologies for enhancing student's technical knowledge in diversified areas of Mechanical Engineering.

2) To provide opportunities for students to address the existing problems for enhancing their problem solving abilities and leadership qualities.

3) To incorporate Inter-Disciplinary areas of Engineering through training for building a good technical foundation.

PEOs, POs, PSOs

POs

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PEOs

PEO 1: Apply knowledge in emerging areas of Mechanical Engineering to handle the realistic problems.

PEO 2: Relate engineering issues to broader social and human context, in which their engineering contributions will be utilized.

PEO 3: Graduates will exhibit managerial skills and social responsibility in their profession and adapt to current trends.

PSOs

PSO_1: Domain Specific Knowledge: Apply the relevant techniques to plan, analyze and design Mechanical Structures.

PSO_2: Product Development: Design and deployment of principles to create a new technology for the success of business.

DEPARTMENT OF MECHANICAL ENGINEERING Course Structure for B.Tech ME w.e. f AY: 2021-22

SEMESTER I

Subject Code	Catagory	Course Title	Contact Periods per week				Credits	Scheme of Examination Max. Marks		
Subject Coue	Category		L	Т	Р	Total	Creuns	Int. Marks	Ext. Marks	Total marks
20MA1001	BS	Algebra & Calculus	3	1	0	4	4	40	60	100
20CH1003	BS	Chemistry for Mechanical Engineering	3	0	0	3	3	40	60	100
20ES1001	ES	Problem Solving & Programming	3	0	0	3	3	40	60	100
20EN1001	HS	English	2	0	0	2	2	40	60	100
20CH1503	BS	Chemistry for Mechanical Engineering Lab	0	0	3	3	1.5	40	60	100
20ES1503	ES	Engineering Drawing	0	1	4	5	3	40	60	100
20ES1506	ES	Problem Solving & Programming Lab	0	0	3	3	1.5	40	60	100
20EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
20MC8001	MC	Mandatory course I	Induction Program							
		Counselling/Mentoring	0 0 1		1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0		-	
		Activity Point Programme	During the Sem				ing the Semester		20 Points	
		Total	11	2	16	29	19.5	320	480	800

SEMESTER II

Subject Code	Category	Course Title	Contact Periods per week		Contact Periods per week		Credits	Exar	Scheme nination Marks	of Max.
			L	Т	Р	T otal		Int. Marks	Ext. Marks	Total marks
20PH1003	BS	Physics for Mechanical Engineering	3	0	0	3	3	40	60	100
20MA1003	BS	Vector calculus, Complex variables &Transforms	3	1	0	4	4	40	60	100
20ES1008	ES	Material Science	3	0	0	3	3	40	60	100
20ES1010	ES	Principles of Electrical & Electronics Engineering	3	0	0	3	3	40	60	100
20PH1503	BS	Physics for Mechanical Engineering Lab	0	0	3	3	1.5	40	60	100
20ES1505	ES	Engineering & IT Workshop Lab	0	0	4	4	2	40	60	100
20EN1502	HS	Oral Communications Skills Lab	0	0	2	2	1	40	60	100
20ES1511	ES	Material Science Lab	0	0	2	2	1	40	60	100
20ES1513	ES	Principles of Electrical& Electronics Engineering Lab	0	0	2	2	1	40	60	100
20MC8002-12	MC	Mandatory course II	2	0	0	2	0			
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme		During the Semes			ster	20 Points		
		Total	14		1 1	l6 31	19.5	360	540	900

SEMESTER III

Subject Code	Category	ry Course Title		onta pe	ct P r we	eriods eek	Credits	So Exam	cheme of ination N Marks	f Max.
			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Mark s
20MA1006	BS	Probability, Statistics &Numerical methods	3	0	0	3	3	40	60	100
20ES1006	ES	Engineering Mechanics	2	1	0	3	3	40	60	100
20ES1015	ES	Thermodynamics	3	0	0	3	3	40	60	100
20ME2001	PC	Fluid Mechanics & Hydraulic Machines	3	0	0	3	3	40	60	100
20ME2002	PC	Manufacturing Processes	3	0	0	3	3	40	60	100
20ES1514	ES	Computer Aided Draftingand Modeling Lab	0	0	3	3	1.5	40	60	100
20ME2501	PC	Fluid Mechanics & Hydraulic Machines Lab	0	0	3	3	1.5	40	60	100
20ME2502	PC	Manufacturing Processes Lab	0	0	3	3	1.5	40	60	100
20CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100
20CC6001	SC	Value added course/Certificate courseI	0	0	0	0	1	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme		During the Semester		ester	20 Points			
		Total	14	1	14	29	21.5	400	600	1000

SEMESTER IV

Subject Code	Category	Course Title	Contact Periods per week		Credits	Exa	Scheme of Examination Max. Marks			
			L	Т	Р	Total		Int. Marks	Ext. Mar ks	Total Marks
20ME2003	PC	Kinematics of Machinery	3	0	0	3	3	40	60	100
20ME2004	PC	Mechanics of Materials	2	1	0	3	3	40	60	100
20ME2005	PC	Metal Forming Processes	3	0	0	3	3	40	60	100
20ME2006	PC	Thermal Engineering	3	0	0	3	3	40	60	100
	OE	Open Elective I	3	0	0	3	3	40	60	100
20ME2503	PC	Computer Aided Machine Drawing	0	0	3	3	1.5	40	60	100
20ME2504	PC	IC Engines Lab	0	0	3	3	1.5	40	60	100
20ME2505	PC	Mechanics of Materials Lab	0	0	3	3	1.5	40	60	100
20CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100
20CC6002	SC	Value added course/Certificate course II	0	0	0	0	1	40	60	100
20MC8002-	MC	Mandatory course III	2	0	0	2	0			
12										
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme		During the Semester		2	20 Points			
		Total	16	1	14	31	21.5	400	600	1000

Scheme of **Contact Periods Examination Max.** per week Subject Code Category **Course Title** Credits Marks Int. Ext. Total L Т Р Total Marks Marks Marks 20ME2007 PC Design of Machine 3 0 3 0 3 40 60 100 Elements 20ME2008 PC 3 0 0 3 3 Metal Cutting & Machine 40 60 100 Tools 20ME2009 PC Thermal Power Systems 3 0 0 3 3 40 100 60 OE **Open Elective II** 3 0 0 3 3 40 60 100 20ME4001-6 PE Professional Elective I 3 0 0 3 3 40 60 100 PC **Design Thinking & Product** 20ME2506 0 0 3 3 1.5 40 60 100 Innovation Lab Metal Cutting & Machine PC 20ME2507 1.5 0 0 3 3 40 60 100 Tools Lab SC Career competency 2 20CD6003 0 0 2 1 40 60 100 Development III SC Value added 0 20CC6003 0 0 0 1 course/Certificate courseIII 100 40 60 Internship I/on job 20ME7501 PR 0 0 0 0 1.5 00 100 100 training/Com Ser Project Counselling/Mentoring 0 0 0 1 1 ___ ___ ___ Sports/Hobby 0 0 2 2 0 ___ ___ ___ Clubs/Activities Activity Point Programme During the Semester 20 Points 0 11 26 640 Total 15 21.5 360 1000

SEMESTER V

Subject Code		Course Title	C	onta pe	ct P r we	eriods eek	edits	Exa	Scheme minatio Mark	e of n Max. s
	Cate		L	Т	Р	Total	CI	Int. Marks	Ext. Marks	Total Marks
20ME2010	PC	Computer Integrated Manufacturing	3	0	0	3	3	40	60	100
20ME2011	PC	Dynamics of Machinery	3	0	0	3	3	40	60	100
20ME2012	PC	Heat and Mass Transfer	2	0	0	2	2	40	60	100
	OE	Open Elective III	3	0	0	3	3	40	60	100
20ME4007-12	PE	Professional Elective II	3	0	0	3	3	40	60	100
20ME4013-18	PE	Professional elective III	3	0	0	3	3	40	60	100
20ME2508	PC	CAD/CAM Lab	0	0	3	3	1.5	40	60	100
20ME2509	PC	Heat Transfer Lab	0	0	2	2	1	40	60	100
20CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100
20CC6004	SC	Value added course/Certificate course IV	0	0	0	0	1	40	60	100
20MC8002-12	MC	Mandatory course IV	2	0	0	2	0			
		Counselling/ Mentoring	0	0	1	1	0			
		Sports/ Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme			Du	ring the S	Semest	er	20 Points	
		Total	19	0	10	29	21.5	400	600	1000

SEMESTER VI

Subject Code	Category	7 Course Title		onta pe	ct P r we	eriods æk	Credits	So Exam	cheme o ination Marks)f Max.
				Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20HS5001 -8	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
20ME2013	PC	Design of Transmission Systems	3	0	0	3	3	40	60	100
20ME2014	PC	Metrology & Instrumentation	3	0	0	3	3	40	60	100
	OE	Open Elective IV	3	0	0	3	3	40	60	100
20ME4019- 24	PE	Professional elective IV	3	0	0	3	3	40	60	100
20ME4025- 30	PE	Professional elective V	3	0	0	3	3	40	60	100
20ES1517	ES	Software Tools Lab	0	0	2	2	1	40	60	100
20ME2510	PC	Metrology & Instrumentation Lab	0	0	3	3	1.5	40	60	100
20CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100
20CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100
20ME7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme			Du	ring the	Semester		20 Points	
		Total	17	0	12	29	23	400	700	1100

SEMESTER VII

SEMESTER VIII

Subject Code	Category	Course Title		Contact Periods per week			Credits	Scheme Exan N M		of natio ax. rks
			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20ME7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
		Activity Point Programme	During the Sem		ester		20 point	s		
			0	0	0	0	12	60	140	200

Open Electives (OE) offered by ME Department

S. No	Course Code	Subject
1	20ME3001	Engineering Optimization
2	20ME3002	Mechatronics
3	20ME3003	Industrial Engineering and Management
4	20ME3004	Automobile Engineering
5	20ME3005	Basics of Mechanical Engineering
6	20ME3006	Automation & Robotics
7	20ME3007	Engineering materials
8	20ME3008	Total Quality Management
9	20ME3009	Industrial Safety and Hazard Management

PROFESSIONAL ELECTIVE (PE)

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options

of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

ELECTIVE					
GROUP	Professional Elective-1	Professional Elective-2	Professional Elective-3	Professional Elective-4	Professional Elective-5
Design Engineering	Product Design & Development (20ME4001)	Design Of Rotating Elements (20ME4007)	Finite Element Methods (20ME4013)	Computational Fluid Dynamics (20ME4019)	Geometric dimensioning an tolerancing (20ME4025)
Thermal Engineering	Gas turbines and Jet Propulsion (20ME4002)	Power plant Engineering (20ME4008)	Refrigeration & AirConditioning (20ME4014)	Hydraulic & matics Systems 20ME4020)	Automobile Engineering (20ME4026)
Production Engineering	Fundamentals of Additive Manufacturing (20ME4003)	Modern Manufacturing Methods (20ME4009)	Automation In Manufacturing (20ME4015)	Surface Engineering (20ME4021)	Manufacturing & Inspection Of Gears (20ME4027)
Industrial Engineering	Management Science (20ME4004)	Engineering Optimization (20ME4010)	Industrial Engineering (20ME4016)	Production & Operation Management (20ME4022)	Industrial Management (20ME4028)
CAD/CAM	Flexible Manufacturing Systems (20ME4005)	Mechatronics (20ME4011)	Intelligent Manufacturing Systems (20ME4017)	Automation &Robotics (20ME4023)	Computer Aided Process Planning (20ME4029)
Materials Engineering	Principles of Metal Extraction & Refining (20ME4006)	Metallurgy (20ME4012)	Composite Materials (20ME4018)	Nano materials (20ME4024)	Smart Materials (20ME4030)

HONORS

S. NO.	COURSE NAME	COURSE CODE	CREDITS						
	POOL 1								
1	Industrial Tribology	20MEH001	4						
2	Non-Destructive Testing	20MEH002	4						
3	Supply Chain Management	20MEH003	4						
4	Reverse Engineering and Rapid Prototyping	20MEH004	4						
	POOL 2								
1	Robotics: Modelling, Analysis and Control	20MEH005	4						
2	Mechanical Handling Systems	20MEH006	4						
3	Theory and Design of Control Systems	20MEH007	4						
4	Smart Materials for Mechatronic Applications	20MEH008	4						
	POOL 3								
1	Automobile Engine Design	20MEH009	4						
2	Automotive Transmission	20MEH010	4						
3	Autotronics& Safety	20MEH011	4						
4	Alternative Energy Sources for Automobiles	20MEH012	4						
	POOL 4								
1	Advanced Thermodynamics	20MEH013	4						
2	Advanced IC Engines	20MEH014	4						
3	Jet Propulsion and rocket Engineering	20MEH015	4						
4	Computational Fluid Dynamics	20MEH016	4						

MINORS

S. NO	SUBJECT	COURSE CODE	CREDITS
1	Engineering Mechanics	20MEM001	4
2	Thermal Engineering	20MEM002	4
3	Production Technology	20MEM003	4
4	Fundamentals of Engineering Design	20MEM004	4
5	Production Planning and control	20MEM005	4
6	Materials Technology	20MEM006	4
7	CAD/CAM	20MEM007	4
8	Renewable Energy Sources	20MEM008	4

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	SUBJECT	COURSE CODE	CREDI TS
I SEM	English	20EN1001	2
	English Language Lab	20EN1501	1.5
IV SEM	Oral Communications Skills Lab	20EN1502	1
VII Sem	Humanities and Social Science Elective		2
		TOTAL	6.5

BASIC SCIENCES (BS)

SEMESTER	SUBJECT	COURSE	CREDIT
		CODE	S
ISEM	Algebra & Calculus	20MA1001	4
1 02/01	Chemistry for mechanical engineering	20CH1003	3
	Chemistry for mechanical engineering lab	20CH1503	1.5
II SEM	Vector calculus, Complex variables & Transforms	20MA1003	4
	Physics for Mechanical Engineering	20PH1003	3
	Physics for Mechanical Engineering Lab	20PH1503	1.5
III SEM	Probability, Statistics & Numerical methods	20MA1006	3
		TOTAL	20

ENGINEERING SCIENCES (ES)

SEMESTER	SUBJECT	COURSE CODE	CREDI TS
ISEM	Problem Solving & Programming	20ES1001	3
I GLIVI	Engineering Drawing	20ES1503	3
	Problem Solving & Programming Lab	20ES1506	1.5
	Material Science & Engineering	20ES1008	3
II SEM	Principles of Electrical & Electronics Engineering	20ES1010	3
	Engineering Workshop	20ES1505	1.5
	IT Workshop		1.5
	Material Science & Engineering Lab	20ES1505	1
	Principles of Electrical and Electronics & Engineering Lab	20ES1513	1
III SFM	Engineering Mechanics	20ES1006	3
	Thermodynamics	20ES1015	3
	Computer Aided Drafting and Modelling Lab	20ES1514	1.5
VII SEM	Software Tools Lab	20ES1517	1
		TOTAL	27

PROFESSIONAL CORE (PC)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
	Manufacturing Processes	20ME2002	2
TTT	Fluid Mechanics & Hydraulic Machines	20ME2001	3
111	Manufacturing Processes Lab	20ME2502	1.5
	Fluid Mechanics & Hydraulic Machines Lab	20ME2501	1.5
		(2+2)	8
	Thermal Engineering	20ME2006	3
	Kinematics of Machinery	20ME2003	3
	Mechanics of Solids	20ME2004	3
IV	Metal Forming Processes	20ME2005	2
	Thermal Engineering Lab	20ME2504	1.5
	Computer Aided Machine Drawing Lab	20ME2503	1.5
	Mechanics of Solids Lab	20ME2505	1.5
		(4+3)	(15.5)
	Thermal Power Systems	20ME2009	3
	Design of Machine Elements	20ME2007	3
V	Machine Tools	20ME2008	2
	Design Thinking & Product Innovation Lab	20ME2506	1.5
	Machine Tools Lab	20ME2507	1.5
		(3+2)	11
	Dynamics of Machinery	20ME2012	3
	Heat Transfer	20ME2013	2
VI	Computer Integrated Manufacturing	20ME2010	3
	Heat Transfer Lab	20ME2509	1
	CAD/CAM Lab	20ME2508	1.5
		(3+2)	10.5
VII	Design of Transmission Systems	20ME2011	3
,	Metrology & Measurements	20ME2014	3
	Metrology & Measurements Lab	20ME2510	1.5
		(1+1)	7.5
	TOTAL	52	5

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Professional Elective I	20ME4001-06	3
VI Sem	Professional Elective II	20 ME 4007-12	3
	Professional Elective III	20 ME 4013-18	3
	Professional Elective IV	20 ME 4019-24	3
VII Sem	Professional Elective V	20 ME 4025-30	3
		TOTAL	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VII Sem	Open Elective IV	3
	TOTAL	12

SKILL ORIENTED COURSE(SC)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
III Sem	Career Competency Development I	20CD6001	1
	Value Added Course/Certificate Course I	20CC6001	1
	Industry Oriented Course I		1
IV Sem	Career Competency Development II	20CD6002	1
	Value Added Course/Certificate Course II	20CC6002	1
V Sem	Career Competency Development III	20CD6003	1
	Value Added Course/Certificate Course III	20CC6003	1
	Industry Oriented Course II		1
VI Sem	Career Competency Development IV	20CD6004	1
	Value Added Course/Certificate Course IV	20CC6004	1
VII Sem	Career Competency Development V	20CD6005	1
	Skill Development Training	20CC6501	1
		TOTAL	12

PROJECT (PR)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Internship I/on job training/Com Ser Project	20ME7501	1.5
VII Sem	Internship II/on job training/Com Ser Project	20ME7502	1.5
VIII Sem	Project work, seminar and internship	20ME7503	12
		TOTAL	15

C NO	САТ	CREDITS PER SEMESTER								CREDI	ALCT
5. NU	CAI	Ι	II	III	IV	V	VI	VII	VIII	TS	AICI E
1	HS	3.5			1			2		6.5	12
2	BS	8.5	8.5	3						20	25
3	ES	7.5	11	7.5				1		27	24
4	PC			8	15.5	11	10.5	7.5		52.5	48
5	PE					3	6	6		15	18
6	OE				3	3	3	3		12	18
7	SC			3	2	3	2	2		12	15
8	PR					1.5		1.5	12	15	
	MC	No Credits							NC		
TO	ΓAL	19.5	19.5	21.5	21.5	21.5	21.5	23	12	160	160

NARAYANA ENGINEERING COLLEGE: NELLORE									
20MA1001		Algebra &Calculus (CSE, ECE, EEE, CE, ME) R2020							
Semester	Ho	ours / We	ek	Total	Credit		Max N	Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
I	3	1	0	69	4	40	60	100	
Pre-requisi	te: Intern	nediate N	lathemat	tics					
Course Obj	ectives:								
1.	To familia	arize the	students	with the t	heory of m	atrices ar	nd quadrat	tic forms	
2.	To analyz	e first or	der ordin	ary differe	ntial equa	tions.			
3.	To enligh	ten the le	earners in	the conce	epts of hig	her order	differentia	al equation an its	
	applicatio	ons							
4.	lo explai	n the serie	es expansi	ons using i	mean value	e theorems	s and the c	oncepts of	
_	multivariable differential calculus.								
5.	To summarize the procedure to solve the partial differential equations.								
0.	6. To explain the student with mathematical tools needed in evaluating multiple								
Course Out		and its ap		is. Indiction of	the cours	o tho stur	dontwill	Plaams	
be able to	comes. Ai	iter succe	SSIULCOIL	ipietion of	the cours	e, the stud		tavonomy Level	
	Solve th	e system	of Linear	Faultions	:			(BTL-3)	
	Solve fi	rst order		tial equa	, tions utili	zing the	standard	(BTL-3)	
02	techniqu	es for ser	arable e	xact linea	r homoge	neous or	Bernoulli	(012-3)	
	cases.				i, nomoge		Dernoulli		
CO 3	Obtain	the com	plete sol	ution of	a higher	order di	fferential	(BTL-2)	
	equation	IS			0			· · · /	
CO 4	Make u	se of the	Taylor's	and Mac	laurin's Se	eries and	Maxima,	(BTL-3)	
	Minima for the given function								
CO 5	Apply a	range of	techniqu	ues for so	lutions of	first orde	er Linear	(BTL-3)	
	and non	linear Pa	artial Diff	erential E	quations (PDE)			
CO 6	Apply the	he technio	ques of	Multiple i	ntegrals fo	or the Are	ea of the	(BTL-3)	
	region bo	ounded by	curves an	nd volume					

CO-PO Mapping														
СО		PO PSO												
	РО	PO	РО	РО	РО	РО	PO	PO	РО	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	3	3	1											
CO3	3	3	1											
CO4	3	2												
CO5	3	3	1											
CO6	3	2												
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					
					C	OURS	e con'	TENT						
MODULE – 1 Matrices Hours: 16 (12L+4T)														
Introduction	to ma	atrices	, Defin	nition o	of Ran	k <i>,</i> Defi	nition	of Ech	elon f	orm ,	Proble	ms, Sc	olving Sy	vstem of
Non-Homogeneous equations- Definition, Conditions for Consistency, Problems, Solving System of														
Homogeneo	us eq	uation	s- Def	inition	, Prob	lems,	Eigen	values	5 & Ei	gen V	ectors-	Defin	ition, P	roblems

,properties of Eigen values & Eigen Vectors(Without proof), Cayley – Hamilton Theorem -Statement(Without proof),finding inverse and power of a matrix by Cayley-Hamilton Theorem, Diagonalization of a Matrix-Definition, similarity of a matrix ,modal matrix, spectral matrix,powers of a matrix, problems on Diagonalization of a matrix, Quadratic Forms- Definition, Finding Matrix from Q.F, Index, signature, rank and nature of the quadratic forms, Reduction of Q.F. into a canonical form by linear transformation, Reduction of Q.F. into a canonical form by orthogonal transformation.

At the end of the Module 1, students will be able to:

- 1. Solve the system of homogenous and non-homogenous linear equations.(BTL-3)
- 2. Obtain the Eigen values and Eigen vectors of a matrix.(BTL-2)
- 3. Identify special properties of matrix and for using this information to study the nature of the linear equations. (BTL-3)
- 4. Find the inverse and powers of a square matrix.(BTL-1)
- 5. Obtain the diagonalization form of the matrix.(BTL-2)
- 6. Apply the techniques of matrices in various engineering problems. (BTL-3)

MODULE -2	First Order Ordinary Differential	Hours: 9 (7L+2T)
	Equations	

Exact Differential equation - Definition, condition for exactness, problems, Non - Exact Differential equations- Integrating factor , Method1:Integrating factor by inspection, problems, Method2:Finding Integrating factor , problems, Method3:Finding Integrating factor , problems, Method4:Finding Integrating factor , problems, Method5:Finding Integrating factor , problems, Linear differential Equation- Definition, Working rule to find general solution, problems, Bernoulli's differential Equation- Definition, Working rule to find general solution, problems, of Differential equation of First order: Newton's law of Cooling-Explanation of the concept, problems, Law of natural growth and Decay- Explanation of the concept, problems and Simple Electric Circuits-Explanation of the concept, problems.

At the end of the Module 2, students will be able to:

- 1. Identify the first order ordinary differential equations. (BTL-3)
- 2. Solve the first order ordinary differential equations. (BTL-3)
- 3. Apply the techniques of first order ordinary differential equations in Newton's law of cooling, Natural growth & Decay problems. (BTL-3)
- 4. Make Use of the first order ordinary differential equation techniques in simple electric circuits.

(BTL-3)

MODULE-3	Higher Order Ordinary Differential	Hours: 11 (8L+3T)
	Equations	

Non-Homogenous Linear Differential equation of second and higher order with constant coefficients-Definition, complete solution, operator D, rules for finding Complimentary function, problems, inverse operator, General method for finding Particular Integral.

Non-homogeneous Linear Differential Equations of Second & Higher order with Constant coefficients with RHS term of the type e^{ax} ,sinax ,cosax, Polynomial in X, $e^{ax}v(x)$, X.V(x)-Explanation of the concept& problems, Method of variation of parameters- Explanation of the concept& problems, Euler- Cauchy equation- Definition, problems ,Legendre's Linear equation- Definition, problems. Applications to

Higher order Differential Equations - L-C-R circuits, problems.

At the end of the Module 3, students will be able to:

- 1. Identify the higher order ordinary differential equations. (BTL-3)
- Solve the linear differential equations with constant coefficients by appropriate methods (BTL-3)
- 3. Solve the linear differential equations with variable coefficients by appropriate methods (BTL-3)

4.Make Use of the higher order ordinary differential equations techniques in electrical circuits. and in various engineering problems. (BTL-3)

MODULE-4	Mean value theorems & Multivariable	Hours: 9 (7L+2T)
	Calculus	

Taylor's and Maclaurin's theorems with remainders-Statements (without proof), problems on Taylor's series , problems on Maclaurin's series, Jacobean-Definition, Properties , problems ,Functional dependence-Definition , problems ,Maxima & Minima of function of two variables - Rules , Maxima & Minima of function of two variables without constraint- problems ,Maxima & Minima of function of two variables with constraint- problems, Lagrange's Method of Undetermined multipliers, problems.

At the end of the Module 4, students will be able to:

- 1. Demonstrate the given function as a series of Taylor's and maclurin's with remainders.(BTL-2)
- 2. Illustrate series expansions of functions using mean value theorems. (BTL-2)
- 3. Apply Jacobean concept to deal with problems in change of variables.(BTL-3)
- 4. Obtain the maxima and minimum values of the function for two variables.(BTL-2)
- 5. Apply the mean value theorems to check the continuity of the function in the given interval

(BTL-3)

MODULE-5	Partial Differential Equations	Hours: 12 (9L+3T)

Definition ,Formation of PDE by the Method of Elimination of arbitrary constants, problems ,Method of Elimination of arbitrary functions, problems, Method of Separation of Variables-Explanation of the concept& problems, First order linear partial differential equations-Definition, Solutions of first order linear PDE-Working rule of Lagrange's Method, problems ,First order non-linear partial differential equations- Definition, Solutions of first order non-linear partial differential equations-Standard form-I, problems , Standard form-II, problems ,Standard form-III, problems, Standard form-IV, problems.

At the end of the Module 5, students will be able to:

- 1. Identify the basic properties of partial differential equations. (BTL-3)
- 2. Outline partial differential equations. (BTL-2)

- 3. Solve the applications of PDE by using the method of separation of variables (BTL-3)
- 4. Apply the PDE techniques in various engineering fields. (BTL-3)

MODULE-6	Multiple Integrals	Hours: 12 (9L+3T)

Double Integrals- Introduction, Evaluation in Cartesian coordinates, problems, Evaluation in Polar coordinates, change of variables – Problems on Cartesian to Polar, Change of Order of Integration-Problems, Area enclosed by plane curves - Problems, Triple integrals- Introduction, Evaluation of Triple Integrals, Volume by Triple Integrals – Problems, Change of variables between Cartesian, cylindrical and spherical polar coordinates- Problems.

At the end of the Module 6, students will be able to:

- 1. Obtain double integrals in Cartesian and polar co-ordinates. (BTL-2)
- 2. Obtain the area bounded by a region using double integration techniques.(BTL-2)
- 3. Solve triple integrals.(BTL-3)
- 4. Obtain volumes by using triple integrals.(BTL-2)
- 4. Make Use of multiple integral techniques in engineering problems.(BTL-3)

	Total hours:	69 hours (52L+17T)
Content beyond syllabus:		

- 1. Orthogonal Trajectories.
- 2. Deflection of Beams .
- 3. Simultaneous Linear equations with constant coefficients
- 4. Taylor's series for function of two variables.
- 5. Homogeneous Linear Partial differential equations with constant coefficients.
- 6. Calculation of mass, centre of gravity, moment of inertia

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Matrices	CO1	https://youtu.be/P2pL5VThrzQ
2	First Order Ordinary Differential Equations	CO2	https://youtu.be/P7gVp333B6M
3	Higher Order Ordinary Differential Equations	CO3	https://youtu.be/btOCUmJkrrg
4	Mean value theorems & Multivariable Calculus:	CO4	https://youtu.be/bJPuy0QZ-tE https://youtu.be/0apMXhWG_W8 https://youtu.be/aqfSOOiO2kI
5	Partial DifferentialEquations	CO5	https://youtu.be/kZ7Oa7iMiCs
6	Multiple Integrals	CO6	https://youtu.be/mleeVrv447s

Text Book(s):

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017
- 3. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Reference Book(s):

1.R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.

2.George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.

3.B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education

4.H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.

Online Resources/ Web Resources:

1 http://www.macs.hw.ac.uk/~simonm/linalg.pdf

2.<u>http://www.e-booksdirectory.com/details.php?ebook=7400re</u>

3 http://www.efunda.com/math/math home/math.cfm

4.http://www.ocw.mit.edu/resources/#Mathematics

5.<u>http://www.sosmath.com/</u>

6.<u>http://www.mathworld.wolfram.com/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE									
20CH1003		CHEM	STRY FOR	MECHANIC	CAL ENGINI	EERING		R2020	
Semester	Н	lours / Wee	k	Total	Credit		Max Ma	arks	
	L	Т	Р	hrs	С	CIE	SEE	TOTA	L
Ι	3	0	0	48	3	40	60	100	
Pre-requis	site: Nil								
Course Ol	ojectives:								
1.	The main o	objective of	f the cours	e is to impa	rt knowled	ge on the fu	ındamental	concepts	
	of chemistr	ry involved	l in applica	ation of sev	eral import	ant enginee	ring mater	ials that	
	are used in	the indust	ry/day-to-o	day life.					
2.	To include	the import	ance of wa	ater in indu	strial usage	, significan	ce of corro	sion	
	control to protect the structures, polymers and their controlled usage								
3.	To acquire	knowledg	e of engine	ering mate	rials and at	out fuels ,l	patteries, su	ırface	
	chemistry a	and lubrica	nts						
									1
Course Ou	itcomes: A	After succe	ssful com	pletion of	the course	, the studer	nt will be a	ble to:	BL
CO 1	Select an	nd employ	suitable w	ater treatn	nent techno	ologies for	domestic a	and	1
	industria	l application	ons						_
CO 2	Apply the	e knowledg	ge of electi	ochemistry	to improv	e the efficie	ency of bat	teries	3
CO 3	Illustrate various corrosion situations and implement suitable corrosion control 2							2	
	measures.								
CO 4	Explain	the prep	aration, p	properties,	and appli	ications of	f thermop	lastics &	2
	thermoset	tting, elaste	omers & co	onducting p	olymers.				
CO 5	Explain of	calorific va	lues, octar	ne number,	refining of	petroleum	and cracking	ng of oils	2
CO 6	Select lub	oricants for	various m	echines.an	d demonstr	ate the prep	paration of	colloids	1

	CO-PO Mapping													
СО		PO											PSO	
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1				2	1					1		
CO2	3	2				1						1		
CO3	3	1				1	2					1		
CO4	2	1				1	2					1		
CO5	1	1				1	1					1		
CO6	2	1										1		
					1. Lov	м 2-М	ledium	3- Hi	σh					

COURSE CONTENT

MODULE – 1

WATER TECHNOLOGY

Definition of hard and soft water, Sources of water and classification of impurities, Hardness and its types, Units of hardness, Determination of hardness of water by EDTA method. problems on hardness, Boiler problems – Scale and Sludge formation in boiler, Priming & Foaming,. Internal treatment methods. Water softening processes –Zeolite process, Ion- exchange process. Brackish water treatment- Electrodialysis, Reverse osmosis.

8hrs

At the end of the Module 1, students will be able to:

1.List the differences between temporary and permanent hardness of water .(L1)

2.Explain the principles of reverse osmosis and electro dialysis. (L2)

3.Compare quality of drinking water with BIS and WHO standards. (L2)

4.Illustrate problems associated with hard water - scale and sludge. (L2)

5.Eexplain the working principles of different Industrial water treatment processes.(L2)

MODULE -2

ELECTRO CHEMISTRY AND ITS APPLICATIONS hrs

Electrode potential, EMF of an electrochemical cell, Nernst equation electrode potential, concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations),**Batteries**-classification Ni- cd cell, lithium ion cell, lead-acid storage cell, fuel cells-hydrogen oxygen fuel cell, methanol – oxygen fuel cell.

At the end of the Module 2, students will be able to:

- 1. **Apply** Nernst equation for calculating electrode and cell potentials.(L3)
- 2. **Compare** different batteries and their applications.(L2)
- 3. **Describe** the theory of construction of battery and fuel cells.(L2)
- 4. solve problems based on cell potential (L3)
- 5. **Explain** the theory of conductometric titrations.(L2)

MODULE-3

CORROSION AND ITS CONTROL

Corrosion - mechanism of chemical, electrochemical corrosion - Pilling Bed worth rule – Types of Electrochemical corrosion - galvanic corrosion - differential aeration corrosion factors influencing corrosion. Corrosion control: Cathodic protection - sacrificial anodic method - Protective coatings: surface preparation for metallic coatings –metal spraying, metal cladding ,hot dipping electro plating (copper plating) and electro less plating (Nickel plating).

At the end of the Module 3, students will be able to:

- **1. Apply** Pilling Bedworth rule for corrosion and corrosion prevention.(L3)
- 2. Categorize the reasons for corrosion and study some methods of corrosion.(L2)
- **3.** Apply Pilling Bedworth rule for corrosion and corrosion prevention (L3)
- 4. Demonstrate the corrosion prevention methods and factors affecting corrosion (L2)
- **5. Explain** various types of corrosion.(L2)

MODULE-4

INDUSTRIAL POLYMERS -

Basic concepts of polymers, mechanisms polymerization –addition, condensation, co polymerization, Classification of plastics: Thermoplastics, thermosetting plastics: Industrial polymers Preparation, properties and applications of PVC, Teflon, Nylons, Bakelite and. Moulding of plastics into articles : Compression, Injection, transfer and extrusion methods.

At the end of the Module 4, students will be able to:

9 hrs

7hrs

9 cf 1 Identify different types of polymers .(L2)

- 2. **Distinguish** between thermoplastic and thermo setting resins .(L2)
- 3. Explain the preparation, properties and applications of some plastic materials.(L2)
- 4.**Describe** the polymerisation reactions.(L2)
- 5. **Demonstrate** the moulding of plastics.(L2)

MODULE-5

FUEL CHEMISTRY

Fuels – Types of fuels, characteristics of good fuel, units Analysis of coal,-proximate and ultimate, Liquid Fuels refining of petroleum, synthetic petrol fischer- tropch and Bergius process ,calorific value,HCV&NCV fuels for IC engines, knocking and anti-knock agents, Octane and Cetane values, cracking of oils; alternative fuels- propane, methanol and ethanol, bio fuels.

At the end of the Module 5, students will be able to:

1.Select suitable fuels for IC engines .(L1)

2.Explain calorific values, octane number, refining of petroleum and cracking of oils .(L2)

3. **Differentiate** petroleum, petrol, synthetic petrol and have knowledge how they are produced . .(L2)

4. **Define** various types of coal.(L1)

5.**Explain** various types of alternative fuels.(L2)

MODULE-6

SURFACE CHEMISTRY AND LUBRICANTS

Surface chemistry-Introduction to surface chemistry ,colloids, micelle formation, synthesis of colloids (any two methods with examples),applications of colloids.

Lubricants-Definition, functions of lubricants, mechanism of lubrication, classification of lubricants, properties of lubricants – viscosity and viscosity index , flash and fire points, cloud and pour points, Aniline points, neutralization number and mechanical strength.

At the end of the Module 6, students will be able to:

- 1. Explain the synthesis of colloids with examples.(L2)
- 2. **Illustrate** the functions and properties of lubricants.(L2)
- 3.**Explain** the mechanism of lubrication. .(L2)
- 4.**Identify** the application of colloids .(L3)

5.**Select** the suitable lubricant for various engines.(L3)

Total hours: 48 hours

Content beyond syllabus:

- 1. Boiler troubles -boiler corrosion and caustic embrittlement.
- 2. Vulcanization and compounding of rubber

Self-Study:

Contents to promote self-Learning:

SN O	Торіс	CO	Reference
1	Hardness of water	CO1	https://nptel.ac.in/content/storage2/courses/105104102/hard

8 hrs

7 hrs

			<u>ness.htm</u>
2	Conductometric titrations	CO2	https://www.youtube.com/watch?v=grWh8Rtb2LM
3	Galvanic corrosion	CO3	https://www.youtube.com/watch?v=2s-sOiJJv88
4	plastics	CO4	https://www.youtube.com/watch?v=FATc12opDCA
5	Refining of petroleum	CO5	https://www.youtube.com/watch?v=INqhbIl8r4Q
6	lubrication	CO6	https://www.youtube.com/watch?v=cTw0S4R6p08

Text Book(s):

- P. C. Jain & Monika Jain, *Engineering Chemistry*, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 16th edition, 2013.
- 2. K. N. Jayaveera, G. V. Subba Reddy and C. Ramachandriah, *Engineering Chemistry*, Mc.Graw Hill Publishers, New Delhi.
- 3. Text Book of Engineering chemistry by y.Bharathi kumari and jyotsna.cherikuri ,VGS publications

Reference Book(s):

- 1. Text book of engineering chemistry by shashi chawla.
- 2. Text book of engineering chemistry by A.jayashree, Willey publications, New Delhi
- 3. Advanced polymer chemistry by M.chanda.

Online Resources:

- 1. https://www.cgaspirants.com/2017/08/engineering-chemistry-by-jain-jain.html
- 2.<u>https://www.scribd.com/doc/278434466/Shashi-Chawla-Engineering-Chemistry-PDF</u>

3. https://www.mdpi.com/books/pdfview/book/240

Web Resources:

- 1. <u>https://nptel.ac.in/courses/105/106/105106119/</u>
- 2. <u>https://youtu.be/KHh_IX1G6uA</u>
- 3. <u>https://www.youtube.com/watch?v=MfbxR9ZDs0s&feature=youtu.be</u>
- 4. https://nptel.ac.in/courses/113/104/113104082/
- 5. <u>https://nptel.ac.in/courses/113/105/113105028/</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20ES1001		PROBL	EM SOLV	ING AND	PROGRA	MMING		R20		
Semester	Hours / Week Total Credit Max Marks									
	L	Т	Р	hrs	С	CIE SEE TOTAL				
Ι	3	0	0	48	3	40	60	100		
Pre-requisite: Mathematics Knowledge, Analytical and Logical skills										
Course O	Course Objectives:									
1. Tou	1. To understand various steps in Program development.									
2. To u	2. To understand the basic concepts in C Programming Language.									
3. To l	earn how to	write modu	ilar and rea	dable C Pro	ograms.					
4. To l	earn the synt	ax and sen	nantics of a	C Program	ming langu	age.				
5. To l	earn structur	ed progran	nming appro	oach for pr	oblem solvi	ng.				
Course O	utcomes: A	fter succes	sful compl	etion of th	e course, th	ne student v	will be able	e to:		
CO 1	Identify me	thods to so	lve a proble	em through	computer p	orogrammin	ig. (BL - 3)			
CO 2	Understand	the use of	basic eleme	ents of C la	nguage. (Bl	L - 2)				
CO 3	Understand	the differe	nce and the	usage of v	arious cont	rol statemer	nt. (BL - 2)			
CO 4	Apply the n	nodular app	proach for s	olving the	problems. (BL - 3)				
CO 5	Apply the A	Arrays and	Pointers for	solving pr	oblems. (B)	L - 3)				
CO 6	Explain Use	er-Defined	Data Types	s and Files.	(BL - 2)					

	CO-PO Mapping													
	PO											PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											1	
CO2	1	2	1										1	
CO3	1	2	1		2								2	2
CO4	2	2	3	2	1							2	3	2
CO5	3	3	2	2								1	2	
CO6	2	2	2	2								1	2	
					1. I o	~ 2	/Jedium	1 3- H	ioh					

2-Medium, 5 nign

COURSE CONTENT

MODULE – 1	FUNDAMENTALS OF COMPUTERS AND	8h
	PROGRAMMING	

Fundamentals of computers: History of Computers, Generations of Computer, The Computer System -The Input-Process-Output Concept, Components of Computer System, Operating System - Introduction, Objectives, Functions.

Introduction to Programming, Algorithms and Flowcharts: Programs and Programming, Programming languages, Compiler, Interpreter, Structured Programming Concept, Algorithms, Flowcharts, How to Develop a Program.

Fundamental Algorithms: Exchanging the values of Two Variables, Counting, Summation of a setof numbers, Factorial computation, Generation of the FibonacciSequence, Reversing the digits of an integer.

At the end of the Module 1, students will be able to:

1. Illustrate the working of a Computer. (BL - 2)

2. Solve problems using language independent notations. (BL - 3)

- 3. Understand the compilers and interpreters. (BL 2)
- 4. Understand Structured Programming. (BL 2)
- 5. Develop algorithms and flowcharts for problems.(BL 3)

BASIC ELEMENTS OF C

7 h

Basics of C: Introduction, Character Set, Structure of a C Program, A Simple C Program, Variables, Data Types and Sizes, Declaration, How does The Computer Store Data in Memory, Identifiers, Keywords, Constants, Assignment, and Initialization.

Operators and Expressions: Arithmetic Operators, RelationalOperators, LogicalOperators, BitwiseOperators, Conditional Operator, Comma operator, sizeof operator, Expressions, L values and R values, Expression Evaluation-Precedence and Associativity, Type Conversion.

At the end of the Module 2, students will be able to:

MODULE -2

- 1. Understand the basic structure of a program in C. (BL 2)
- 2. Understand tokens in C language.(BL 2)
- 3. Illustrate the working of expressions.(BL 2)
- 4. Understand the precedence and Associativity rules of operators. (BL 2)
- 5. Understand the rules of type conversion. (BL 2)

MODULE-3	DATA INPUT / OUTPUT AND CONTROL STATEMENTS	8 h

Input and Output: Basic Screen and Keyboard I/O in C, Formatted Input and Output, Unformatted Input and Output Functions

Control Statements:Selection Statements - if, Nested if, if-else, Nested if-else, else-if ladder, switch Looping Statements - while, do-while, for, Nested loops, Unconditional Statements - goto, break, continue, return.

At the end of the Module 3, students will be able to:

- 1. Explain the Formatted and Unformatted I/O functions. (BL 2)
- 2. Understand Selection Statements. (BL 2)
- 3. Understand Looping Statements. (BL 2)
- 4. Explain Unconditional Statements. (BL 2)

MODULE-4 FUNCTIONS AND PROGRAM STRUCTURE

Functions: Introduction, Using Functions, Passing Arguments to a Function, Working with Function, Scope and Extent, Recursion, The C Preprocessor.

Program Structure: Storage classes, Automatic variables, External variables, Static variables, Register variables, Multifile programs.

At the end of the Module 4, students will be able to:

- 1. Understand the basic concept of functions. (BL 2)
- 2. Understand concept of Recursion and Preprocessor. (BL 2)
- 3. Explain storage specifiers. (BL 2)

MODULE-5

ARRAYS AND POINTERS

9 h

8 h

Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays, Passing Arrays to Function, Strings - Declaration, Initialization, Printing Strings, String Input, Character Manipulation, String Manipulation, Arrays of Strings.

Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passing Pointers to a Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command line arguments, Dynamic Memory Management.

At the end of the Module 5, students will be able to:

- 1. Understand the concept of Arrays. (BL 2)
- 2. Understand the concept of pointers. (BL 2)
- 3. Explain Dynamic Memory Management. (BL -2)

USER-DEFINED DATA TYPES AND FILES MODULE-6 8 h Structures and Unions: Basics of Structures, Nesting of Structures, Arrays of Structures, Structures and Pointers, Structures and Functions, Self-ReferentialStructures, Unions, Bit-fields, Enumerations, typedef. Files: Introduction, Using Files in C, Working with Text Files, Random Accesses to Files of Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. (BL - 2) 2. Understand the concept of Self-ReferentialStructures. (BL - 2) 3. Understand the working of files. (BL - 2) Total hours: 48 Hours **Content Beyond Syllabus:** 1. Analysis of Algorithms 2. Binary Files 3. Variable Length Argument Lists Self-Study: Contents to promote self-Learning: Reference S. No Module https://nptel.ac.in/courses/106/106/106106127/ [Lec1] Fundamentals of Computers and https://nptel.ac.in/courses/106/105/106105214/ 1 Programming [Week 1 - Lec 1 To 2] https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec 1 To 4] https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec5] https://nptel.ac.in/courses/106/105/106105171/ [Week 2 - Lecture 7 To 10] https://nptel.ac.in/courses/106/105/106105171/ Week 3 - Lec 11 To 14] 2 Basic Elements of C https://nptel.ac.in/courses/106/106/106106127/ [Lec2] https://nptel.ac.in/courses/106/106/106106127/ [Lec3] https://nptel.ac.in/courses/106/106/106106127/ Lec4] https://nptel.ac.in/courses/106/106/106106127/ [Lec5] https://nptel.ac.in/courses/106/105/106105171/ [Week 3 - Lec15] Data Input / Output and Control 3 https://nptel.ac.in/courses/106/105/106105171/ Statements Week 4 - Lec 16 To 20] [Week 5 - Lec 21 To 25] https://nptel.ac.in/courses/106/106/106106127/ Lec 6 &7] https://nptel.ac.in/courses/106/105/106105171/ [Week 7 - Lec35] [Week 8 - Lecture 36 To 40] https://nptel.ac.in/courses/106/105/106105171/ 4 Functions and Program Structure [Week 11 - Lec 53 To 54] https://nptel.ac.in/courses/106/106/106106127/ [Lec 20 To 27]

5		https://nptel.ac.in/courses/106/105/106105171/				
		[Week 6 - Lec 26 To 30][Week 7 - Lec 32 To 34,48]				
	Arrays and Pointers	[Week 12 - Lec 58, 59, 61]				
		https://nptel.ac.in/courses/106/106/106106127/				
		[Lec 9 To 19]				
		https://nptel.ac.in/courses/106/105/106105171/				
	User-Defined Data Types and Files	[Week 11 - Lec 55, 56, 57, 60]				
6		https://nptel.ac.in/courses/106/106/106106127/				
		[Lec 36, 37, 38]				
		https://nptel.ac.in/courses/106/106/106106127/				
		[Lec60]				

Text Book(s):

- 1. Pradip Dey, and Manas Ghosh, "Programming in C", 2018, Oxford University Press.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill **Reference Books :**
 - 1. Brian W. Kernighan, and Dennis M. Ritchie, "The C Programming Language", 2ndEdition, Pearson.
 - 2. Ajay Mittal, Programming in C: A Practical Approach, 3/e, Pearson Publication
 - 3. SCHILDT and HERBERT, C: The Complete Reference,4th Edition, McGraw Hill, 2020
 - 4. SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., Problem Solving with C,2nd Edition, PHI Learning, 2018
 - 5. Paul Deitel, Deitel& Harvey Deitel, C How to Program,6th Edition, Pearson Education
 - 6. Jeri R. Hanly, Elliot B. Koffman, Ashok Kamthane and A.Ananda Rao, Programming in C and Data Structures, 1st Edition, Pearson Education, 2010.
 - H.Cheng, C for Engineers and Scientists, Mc.Graw-Hill International Edition Education / PHI, 2009
 - 8. Yashavant P. Kanetkar, Let us C, 16th Edition, BBP Publications, Delhi, 2017.
 - 9. R.G. Dromey, "How to Solve it by Computer". Pearson, 2014.
 - 10. Anita Goel, Computer Fundamentals, Pearson Publication, 2010.

Online Resources / Web Resources:

- 1. <u>https://nptel.ac.in/courses/106/105/106105171/</u>
- 2. https://nptel.ac.in/courses/106/106/106106127/
- 3. https://www.youtube.com/playlist?list=PLVlQHNRLflP8IGz6OXwlV_lgHgc72aXlh
- 4. <u>https://www.youtube.com/watch?v=8PopR3x-VMY</u>
- 5. <u>https://www.youtube.com/watch?v=v1794HKeXug</u>
- 6. https://books.goalkicker.com/CBook/
- 7. https://www.tutorialspoint.com/cprogramming/index.htm
- 8. https://www.programiz.com/c-programming
- 9. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 10.https://www.edureka.co/blog/c-programming-tutorial/
- 11.<u>https://data-flair.training/blogs/c-tutorial/</u>
- 12.https://www.programmingsimplified.com/c-program-examples
- 13.https://www.w3schools.in/category/c-tutorial/
- 14.C Programming Notes for Professionals book : https://books.goalkicker.com/CBook/

NARAYANA ENGINEERING COLLEGE :: NELLORE											
20EN1001	ENGLISH									R2020	
Samaatan	Hours / Week					Total	Credit	Credit		Max Marks	
Semester	L		Т	Р		hrs	С	CIE	SEE	TOTAL	
Ι	2		0	0		32	2	40	60	100	
Pre-requisite: Knowledge of fundamentals of English Language & Grammar											
Module	Module 1 Module 1		lule 1	N	Iodule 1	Module 1	Module 1 Module		Total		
No. of Hours	05		0	5		06	05	05 06		32	
Course Objectives	:			•						•	
 2. To improve the Language proficiency of students in English with an emphasis on Vocabulary, Reading and Writing skills. 3. To provide knowledge of grammatical structures & rules and encourage their appropriate use. 4. To expose the students to Reading skills and apply the skill & strategies of a successful reader 5. To acquaint the students with effective strategies of paragraphs, note making, text editing, review writing and formal correspondence such as letter writing, e mail, and memos. 6. To aid the students acquire appropriate and adequate knowledge on writing Technical Reports. Course Outcomes: After successful completion of the course, the student will be able to: CO 1 Acquire in depth knowledge on formulating appropriate sentences with 											
CO 2	Understand the factors that influence in use of grammar and learn to use sentences unambiguously. (B.L:2)										
CO 3	Impart effective strategies for professional written communication using devices of coherence & cohesion with adequate support & detail. (B.L:3)										
CO 4	Provide knowledge of use of phrases & clauses and improve effective writing Note making & Paraphrasing. (B.L:2)										
CO 5	Underst strategie (B.L:2)	andi es to	ng the plan to	gramm o write	nar 1 dia	rules for s logues, re	ynthesis of se views and edi	ntences and u t the text effe	ise prewritin ectively.	g	
CO 6	Master the skills and sub skills of reading and use strategies for reading effectively and provide knowledge on the structure and format of technical writing. (B.L:3)										

CO-PO Mapping														
CO	PO												PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2
CO1	1									2		2		
CO2	1									2		2		
CO3	1									3		2		
CO4	1									2		3		
CO5	1									3		3		
CO6	1									3		3		
1: Low, 2-Medium, 3- High														

COURSE CONTENT

Module – I

Grammar : Parts of speech: Noun (Countables & Uncountables, Singulars & Plurals, Kinds of Nouns), Pronoun, Verb, Adverb, Adjective - Kinds of Sentences & Sentence Structures – Question forms – Word order in Sentence

Vocabulary Building : Concept of word formation – Synonyms & Antonyms – Homonyms & Homophones – Prefixes & suffixes – Commonly confused Words – One word substitutes – Idioms & Phrasal Verbs At the end of the Module 1, students will be able to:

- Acquire in depth knowledge on basic grammar concepts.
- Understand the meaning of suffixes & Prefixes, idioms and phrasal verbs.
- Learn meaning and usage of Vocabulary.

Module – II

Grammar : Subject Verb agreement – Pronoun-antecedent agreement – Verbs: auxiliary verbs (Primary & Modal)- Tenses

Writing : Principles of writing: clarity, simplicity, brevity, single focus, organization of thoughts - Sentence Structure – Joining the sentences - sequencing the ideas - introduction and conclusion – Punctuation.

At the end of the Module II, students will be able to:

- Learn to use sentences clearly.
- Understand the usage of grammar.
- Learn the importance of use of Auxiliary verbs.

Module – III

Hours :10

Hours :06

Hours :08

Grammar : Direct & Indirect Speech – Active and Passive Voice – Comparison of Adjectives – Articles – Prepositions

Writing : Paragraph Writing - Phrases & Clauses – Conditionals - Business letters and Emails and Memos - Structure/ template of common business letters and emails: inquiry/ complaint/ placing an order
At the end of the Module III, students will be able to:

- Understand and learn the nuance of writing business letters, e-mails, memos and effective paragraphs
- Learn to use devices of coherence & cohesion with adequate support & detail
- Learn the use of prepositions and active & passive voice in engineering and scientific contexts.

Module – IV

Hours :10

Grammar : Phrasal Verb – Cause and effect – Verb noun Collocations & adjective-noun collocations – correcting common errors in grammar and usage - Misplaced modifiers, idiomatic expressions **Writing :** Note Making, organizing techniques: providing a suitable title, headings and sub headings; methods

Writing : Note Making- organizing techniques: providing a suitable title, headings and sub headings; methods of sequencing - Paraphrasing -techniques of paraphrasing: Replacement of words and phrases, change of sentence structures.

At the end of the Module IV, students will be able to:

- Understand the usage of phrases and clauses in sentences
- Learn grammatical rules to encourage their appropriate use in writing
- Learn to write effective note making and paraphrase

Module – V		Hours :08						
Grammar : Questi	on formation (Wh- questions, Yes or No questions, Tag questio	ons)-If Clauses— Simple,						
Compound, Comple	x Sentences - Correcting common errors in grammar and usage							
Writing : Editing short texts - Dialogue writing - Writing Definitions (short and long) – compare and contrast								
paragraphs- Writing	of Reviews : Book / Play / Movie - focus on appropriate vo	ocabulary and structure -						
language items like	pecial vocabulary and idioms used							
At the end of the M	odule V, students will be able to:							
• Acquire the	knowledge of applying the grammatical rules for synthesis of sent	ences						
• Learn to wri	te dialogues for various contexts							
• Learn to edi	the text and writing reviews							
Module – VI		Hours :06						
Reading Skills : Ty	pes of reading: Skimming, Scanning, Intensive & Extensive Readi	ng - Effective						
Reading-Tips								
Reading Comprehen	sion							
Scramble Sentences								
Complete the passage	e using contextual clues							
Identifying Main Ide	as using Scanning Technique							
Identifying Specific	Ideas using Skimming Technique							
Writing : Describin	g - Report Writing: definition - purpose - types - structure - forma	al and informal reports -						
stages in developing	report- proposal, progress and final reports -examples							
At the end of the M	odule VI, students will be able to:							
• Master the s	kills and sub skills of reading							
• Learn the str	ucture and format of technical reports							
Learn to wri	te description of things, process, places and persons							

Content beyond syllabus:

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Vocabulary for Aptitude & Recruitment Tests Campus Jobs	CO1	https://youtu.be/uzvZa2qEuWo
2	Tips to Improve Verbal and Written Communication Skills	CO2	https://youtu.be/6Y3NY0ERBxY
3	How to write professional emails in English	CO3	https://youtu.be/3Tu1jN65slw
4	Introduction to Collocation	CO4	https://youtu.be/-ouWOpo2Uh8
5	Error Spotting Questions in Campus Recruitment Tests	CO5	https://youtu.be/Rz6-qjNrzCU
6	Reading Skills: How To Skim, Scan and Read for Detail Effectively	CO6	https://youtu.be/SRHNKzXxu6o

Text Books:

- Green, David Contemporary English Grammar –Structures and Composition, MacMillan India, 2014
- Raymond Murphy's English Grammar with CD, Murphy, Cambridge University Press, 2012
- Michael Swan, (2017) Practical English Usage (Practical English Usage), 4th edition, UK:Oxford University Press.
- Ashraf, M Rizvi. Effective Technical Communication. Tata McGraw-Hill, 2006.

Reference Books

- English Conversation Practice Grant Taylor, Tata McGraw Hill, 2009.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012
- Meenakshi Raman and Sangeeta Sharma, Professional Communication, Second Edition, Oxford University Press, India, 2017
- Michael McCarthy, Felicity O'Dell, (2015) English Vocabulary in Use Advanced (South Asian Edition), UK: Cambridge University Press
- Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Th edition.

WEB RESOURCES:

- Grammar/Listening/Writing 1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/</u>
 <u>Grammar/Vocabulary</u>
- English Language Learning Online
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game

<u>Reading</u>

- https://www.usingenglish.com/comprehension/
- https://www.englishclub.com/reading/short-stories.htm
- <u>https://www.english-online.at/</u> <u>Listening</u>
- <u>https://learningenglish.voanews.com/z/3613</u>
- http://www.englishmedialab.com/listening.html
 Speaking
- <u>https://www.talkenglish.com/</u>
- BBC Learning English Pronunciation tips
- Merriam-Webster Perfect pronunciation Exercises
 <u>All Skills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org/</u>

Online Dictionaries

- Cambridge dictionary online : <u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE								
20CH1503	CHEMISTRY FOR MECHANICAL ENGINEERING LAB R2020							
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
I	0	0	3	48	1.5	40	60	100
Pre-requisi	te: Nil							
Course Obj	ectives:							
1.To pro	ovide the	learners	hands-on-	-training	on the pr	actical ap	plications	s of the
concepts	s learnt ir	the the	oretical se	essions or	n water tr	eatment,	electroch	emistry,
lubrican	ts, using s	imple che	mical met	thods.				
2.The c	ourse wil	l also tra	ain the le	arner to	observe g	good lab	practices,	record
readings	and grap	hically re	present th	ne results,	as well a	s analyze	and inter	pret the
influenc	e of reacti	on conditi	ions on the	e results.		-		-
		•••••••						
Course Outcomes: After successful completion of the course, the student will be able to:								
CO 1	Analyze	quality pa	rameters o	f water sa	nples from	n different	sources	
<u> </u>	Perform	quantitatis	e analysis	using inst	rumental r	nethode	5541005	
602		quantitativ	c analysis	using mst		for each a		+:+

utilize the fundamental laboratory techniques for analyses such as titrations, CO 3 separation/purification/ and Spectroscopy

CO 4 To be able to analyze and gain experimental skill	111.
---	------

CO-PO Mapping														
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3											1		
CO2	3											1		
CO3	3											1		
CO4	3											1		
	1: Low, 2-Medium, 3- High													

1: Low, 2-Medium, 3- High

COURSE CONTENT	СО
Task-1 : Determination of Hardness of a water sample	
Objective	
1. Determine the total hardness (total calcium and magnesium ion concentration).	CO1
2. Learn how to titrate with EDTA solution.	01
3. Determine permanent hardness and the temporary hardness	
Task-2 : Estimation of DO	
Objective:	
1.To Determine the level of dissolved oxygen in a sample of water using Winkler's method.	
2. Analyze the effects of various factors on the level of dissolved oxygen in a water sample	CO 1
(e.g., salt content, temperature, degree of mixing, and the presence of reducing	
compounds).	
Task-3- Determination of chloride content of water	
Objective:	
define precipitation titrations,	CO 1
1. state and explain the principle of precipitation titrations with reference to the determination	

of silver ions in an aqueous solution,	
2. explain different basis of end point determination in the argentometric titrations,	
3. prepare a standard solution of sodium chloride and use it for the standradisation of silver nitrate,	
4. Titrate the given solution of chloride ions with silver nitrate by using Mohr's and Fajan's	
methods and Determine chloride ion concentration in a water sample.	
Task-4: pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base	
Objective:	
1. To perform a potentiometric titration of an acidic solution of known molarity.	
2. To graph the volume of base added vs the pH and to determine the equivalence point	CO 1
3. To calculate the molarity of the basic solution	
Task-5: Determination of cell constant and conductance of solutions	
Objective:	
1. To determine conductivity of the given water sample. by using conductivity meter	CO 1
2. To understand the specific conductance.	
Task-6 : Potentiometry - determination of redox potentials and emfs	
Objective:	
1. Determine the concentration of an unknown iron(II) solution. By using potentiometer	
2. Discuss how the potential changes with relative concentration of oxidised/reduced from,	
3. perform a redox titration of ammonium iron (II) sulphate using potassium dichromate as	CO 1
oxidizing agent,	
4. determine the equivalence point of the redox titration by plotting titration curve using	
potential change values and amount of oxidizing agent added during titration,	
Task-7 : Preparation of a polymer	
Objective: To prepare phenol formaldehyde resin. (Bakelite)	
 Understand the differences between linear and cross linked polymers. 	
2. Compare and contrast the recycling properties of linear and cross linked polymers.	CO 1
3. Compare the combustion properties of various types of material.	
4. Define the following terms: polymer, monomer, repeat unit, cross linking, biopolymer	
Task-8: Determination of percentage of Iron in Cement sample by colorimeter	
Objective:	
1.To provides practical knowledge of instrumental for developing experimental skill in	<u> </u>
building colorimetric estimation of iron in cement.	CU 2
2.understand beers –lamberts law principle	
Task-9: Estimation of Calcium in port land Cement	
Objective:	
1.To estimate calcium cement by EDTA method.	
2. To understand the strength of the port land cement.	CO 2
Task-10 : Determination of Strength of an acid in Pb-Acid battery	
Objective:	
1.To determine the half –reactions involved in spontaneous oxidation –reduction reactions.	CO 3
2. Explain the function of the lead storage and dry cell batteries electrolysis involving two	
lead strips immersed in sulfuric acid.	

Additional Experiments:						
Task-11: Adsorption of acetic acid by charcoal						
Objective ;1cite applications of adsorption, 2 differentiate between adsorption and absorption						
 Define physisorption and chemisorptions, describe adsorption isotherms, and study adsorption isotherms for adsorption of oxalic acid on activated charcoal. 						
Task-12	2: Determination of Viscosity of lubricating oil by Red Viscometer					
Objective: 1.Measuring viscocity of fluids. 2.Describe a fluid as having "high "or "low" viscosity						
Virtual	Labs:					
1.	http://vlab.amrita.edu/?sub=2&brch=190∼=338&cnt=1					
2.	http://vlab.amrita.edu/?sub=2&brch=190∼=339&cnt=1					
3.	http://vlab.amrita.edu/?sub=2&brch=190∼=606&cnt=1					
Self-St	udy:					

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Estimation of bardness of water	CO 1	https://www.youtube.com/watch?v=Sa0Wf
1	Estimation of hardness of water	01	A9UGG0
2	Potontiomotric roday titration	CO 1	https://www.youtube.com/watch?v=wVJ8W
2	Potentiometric redox titration		<u>Qax0rQ</u>
2	Proparation of polymor	CO 1	https://www.youtube.com/watch?v=PSSK5V
3	Preparation of polymer	04	<u>GcC_0</u>

Text Book(s):

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Jaya Shree Anireddy, Textbook of Engineering Chemistry, Wiley Precise Textbook Series, 20

3. Chemistry in Engineering and Technology, Volume W, Tata McGraw Hill Publishing Company

Reference Book(s):

1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.

2Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

Web References:

- 1. https://nptel.ac.in/courses/122101001/23
- 2. https://nptel.ac.in/courses/104103071/39

	NA	RAYANA	ENGINE	ERINGCO	DLLEGE:N	ELLORE		
20ES1503			ENGINE	EERINGD	RAWING			R2020
Semester	Hours /Week Total Credits Max Mar				rks			
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
Ι	0	1	4	80	3	40	60	100
Pre-Requisite : B	asic Mather	matics(Geo	ometry)					
Course Objectiv	es:	× *	57					
1. To impart sk	ills on usin	g drawing	instruments	5				
2. To explore v	arious Scal	es in Engi	neering prac	ctice				
3. To convey e	xact in form	nation of a	ny physical	object on o	drawing she	et.		
4. To Construc	t Engineerii	ng Curves	s by using g	general me	thods			
5. To impart sk	ills of draw	ing instrui	nents and the	heir use to	convey exa	ct and com	plete inform	nation of
any object.								
6. To gain know	wledge for a	conversion	of isometri	ic views in	to orthogra	phic views		
Course Outcome	s :At the er	nd of the co	ourse, stude	ent will be a	able to:			
CO1	Define the	e qualities	of precision	n and accur	acy in engi	neering dra	wing.(BL-	1)
CO2	Draw eng	ineering c	urves with o	different m	ethods(BL-	3).		
CO3	Develop t	he orthogr	aphic proje	ction of po	ints,lines,pl	anesandso	lids.(BL-3)	
CO4	Construct	Projection	ns of solids	and develo	pment of su	urfaces.(BL	2-3)	
CO5	Construct	the develo	opment of s	urfaces.(Bl	L-3)			
CO6	Construct	Isometric	and Perspe	ctive views	s(BL-3).			
					()			
			COUR	SECONT	ENT			
TASK-1		Introd	luction &	Conic sec	tions			14Hours
Introduction to E	ngineering	Drawing	Principles	of Enginee	ring Drawii	ng and thei	r significan	ce-various
instruments used,	drawing sh	neet sizes	and title b	lock, lette	ring, BIS c	conventions	s, types of	lines and
dimensioning met	hods. Geo	metrical c	onstruction	s: simple	constructio	ons, constr	ruction of	Pentagon,
Hexagon by genera	al method o	nly.						
Conic Sections: T	ypes of con	ics: Ellips	e, Parabola	and Hyper	bola (Eccer	ntricity me	thod only),.	Cycloid,
Epicycloids and H	vpocvcloid.	Involute				•	•	
Scales: Reduced a	nd Enlarged	l scales. Re	epresentativ	ve fraction.	Scales: pla	in, diagona	l only.	
AttheendoftheTask	1 studentsv	villbeablet	D.		~ · · · · · · · · ·			
1. Understand	1 of Geome	trical Cons	structions.(I	3L-3).				
2. Understand	1 principles	of enginee	ering scales	(BL-3).				
3. Draw Coni	cal and Cyc	loidal curv	es by using	g general m	ethod.(BL-	3).		
TASK-2		Orth	ographic P	rojections				13Hours
Objectives and Pr	inciple of j	projection	: Methods of	of projectio	ons, Compar	rison betwe	en first ang	gle and third
angle projection.								
Projections of poi	nts:Projecti	ion of poin	ts placed in	different o	quadrants,			
Projection of stra	ight lines: 1	Fundament	tal concepts	, Line para	llel, perpen	dicular and	d inclined to	one and two
reference planes pl	aced in firs	t quadrant	only,					
Projections of pla	nes: Projec	tion of pla	nes (Triang	le, Square,	Pentagon,	Circle) para	allel, perper	ndicular and
inclined to one and	two refere	nce planes	placed in fi	irst quadra	nt only			
At the end of the T	nek? studom	te will be a	ble to:					
1 Understand	isk2,stuuell 1 Orthoorar	bic Proiec	tions (RI $_2$?	3				
2. Draw Proje	ection of lin	les incline	to one and). I two refere	ence planes	(BL-3).		
3. Construct	Projection of	of planes in	clined to or	ne and two	reference p	lanes.(BL-	3).	

	TASK-3	Projections of Solids		15Hours						
Types Cylinder plane and	of solids; Polyhedr and Cone), with its and d parallel to other plan	al, Solids of revolution, Projections of regular sol xis perpendicular to one plane and parallel to another pla e.	ids (Prisn ne, Axis in	ns, Pyramids, nclined to one						
Attheend	loftheTask3, studentsw	illbeableto:								
2 1	2 Draw projections of Prisms Pyramids Cylinders and Cone (BL-3)									
2. 1	TASK-4	Sections of Solids and Development of Surfaces	s	14Hours						
Sections	of Solids: Types of se	ctional views of solids, cutting planes, Sections of Prism	, Pyramids	s, Cylinder						
and Cone	e		•							
Develop Pyramid,	ment of surfaces: Dev Cone	velopment of Surfaces of right regular Solids-Prism, Cyli	inder,							
At the en	d of the Task 4, stude	nts will be able to:								
1. U	Understand Sections of	f Solids in simple positions.(BL-2)								
2. I	Draw development of S	Simple right regular Solids.(BL-3).								
	TASK-5	Isometric and Orthographic Projections		12Hours						
T		internet in a standard and a standa		12110u13						
	ic Projections: Princ	iples, isometric scale, isometric views, Conventions, is	sometric v	iews of fines,						
planes, s	imple solids (Cube, C	ylinder, Cone), Conversion of Isometric views into Ortho	ographic vi	lews.						
At the en	id of the Task 5, studer	its will be able to:								
	Understand the isometry	ric projections (BL-2) Simple right regular Solids (BL-3)								
2. 1	Jraw development of	Simple fight fegular Solids.(DL-5).								
ſ	TASK-6	Perspective Projections		12Hours						
Perspec	tive Projections: Pers	spective views of Line, Planes(square, circular, pentagon) and Simp	ole solids						
(Square j	prism, Triangular pyra	umid, Cone)by using Visual Ray Method only								
At the e	nd of the Task6, stude	nts will be able to:								
1.DrawI	Perspectiveviewsofpla	nes (BL-3).								
2.Drawl	Perspectiveviewsofsim	plesolids(BL-3)								
		Tota	l hours:	80hours						
Content	beyond syllabus:									
1.Interpe	enetration of Surfaces.									
Self-Stu	dy:									
Contents	to promote self-Learr	ung:								
SNO	Торіс	Reference								
1	1 Introduction to Basic https://mrcet.com/downloads/hs/Engineering%20Graphics Engineering Scales %20Manual%20final.pdf									
2	Engineering curves	www.nptel.ac.in/courses/112104019/								
3	Orthographic Proje	ctions www.nptel.ac.in/courses/112104019/								
4	Projections of Solic	ds www.nptel.ac.in/courses/105104148/								
5	Isometric and Orthe Projections	ographic <u>https://www.youtube.com/watch?v=iXgC</u>	<u>zZFrYlg</u>							

- 1. Bhatt N.D."Elementary Engineering Drawing", Charotar Publishers, 2014.
- 2. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 3. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e,Scitech Publishers, Chennai, 2012.
- 4. Engineering Drawing by DrAVSSridhar Kumar, Dr Krishnaiah, TP VaraPrasad., Spectrum education, Suntechno Publications, 2019

Reference Book(s):

- 1. Engineering Drawing and Graphic Technology-International Edition, ThomasE. French, Charles J. Vierck, Robert J. Foster, McGraw-Hill, 2014
- K.Venugopal "Engineering Drawing and Graphics", New Age International (P)Ltd., New Delhi, 2010

	NARAYANA ENGINEERING COLLEGE::NELLORE							
20ES1506	PROBLEM SOLVING AND PROGRAMMING LAB R20							
Semester		Hours /	Week	Total	Credit		Ma	x Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
I	0	0	3	48	1.5	40	60	100
	Pre-requ	uisite: M	athematio	s Knowled	dge, Analy	rtical & Lo	gical Skill	S
			C οι	ırse Objec	tives:			
1. To v	vork with t	he compo	ound data	types				
2. To e	xplore dy	namic me	mory alloc	ation conc	epts			
3. To a	ble to des	ign the flo	wchart an	d algorith	m for real	world pro	blems	
4. To a	ble to wri	te C prog	rams for re	eal world p	oroblems ι	using simp	le and cor	mpound
data	atypes			-				
5. To e	employee	good pro	gramming	style, sta	ndards an	d practice	s during p	orogram
dev	elopment	•		• •		•	01	0
	•							
Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	CO 1 Translate algorithms into programs (In C language) (BL - 2)							
CO 2	Code and debug programs in C program language using various constructs.(BL-3)							
CO 3	Solve the	Solve the problems and implement algorithms in C. (BL - 3)						
CO 4	Make use	e of differ	ent data ty	pes to hai	ndle the re	eal time da	ıta (BL - 3)	

CO-PO Mapping														
	PO PSO							PSO						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	СО					
TASK-1 (3H)						
1. Practice DOS and LINUX Commands necessary for execution of C Programs.	CO 1					
2. Study of the Editors, Integrated development environments, and Compilers in						
chosen platform.						
3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the						
programming environment.						
TASK-2 (6H)						
1. Practice programs: Finding the sum of three numbers, exchange of two	CO 1					
numbers, largest of two numbers, to find the size of data types, Programs on						
precedence and associativity of operators, sample programs on various library						
functions.						
TASK-3 (6H)						
1. Write a C program to calculate the factorial of a given number	CO1					
2. Fibonacci sequence is defined as follows: the first and second terms in the						
sequence are 0 & 1. Subsequent terms are found by adding the preceding two terms						
in the sequence. Write a C program to generate the first n terms of the sequence.						
3. Write a program to find the roots of a Quadratic equation.						
TASK-4 (6H)						
1. Write a program to generate the series of prime numbers in the given range.	CO 2					
2. Write a program to reverse the digits of a number.						

3. Write a C program to find the sum of individual digits of a positive integer.						
TASK-5 (3H)						
1. Write a program to check for number palindrome.	CO 2					
2. Write a program to find the maximum of a set of numbers.						
3. Write a C program to find the GCD (greatest common divisor) of two given integers						
TASK-6 (3H)						
1. Write a program to find the sum of positive and negative numbers in a given set	CO 3					
ofnumbers.						
2. Write C code to reverse the elements of the array. For example, [1,2,3,4,5]						
3 Write a C program to find factorial of a given integer number using recursion						
TASK-7 (6H)						
1. Write a C program that use pointers to find Addition of Two Matrices	CO 3					
2. Write a C program that use functions to find Multiplication of Two Matrices	000					
TASK-8 (3H)						
1. Write a program to accept a line of characters and print the number of	CO 3					
Vowels.Consonants, blank spaces, digits and special characters.						
2. Write a C program to check whether a given string is a palindrome or not.						
withoutusing any built-in functions.						
TASK-9 (6H)						
1. Illustrate the use of auto, static, register and external variables.	CO 4					
2. Write a program to read and print student information using structures						
3. Write a C program to define a union and structure both having exactly the						
same						
numbers using the size of operators print the size of structure variables as well as						
unionvariable						
TASK-10 (6H)						
1 Murite e pregram te eplit e "file" inte two files equifiles and files Murite lines inte	<u> </u>					
1. Write a program to split a life linto two mes, say met and mez. Write lines into	04					
numbered lines into file 1 and even numbered lines into file 2						
2 Write a program to morge two files						
2. Write a program to merge two mes.	1					

Additional Experiments:					
TASK-1					
 Programs on bitwise operators. Programs on bit fields. 					
TASK-2					
 Write a program to read a set of strings and sort them in alphabetical order. Programs on implementation of structures using files. 	CO 4				

Virtual Labs:
1. Problem Solving Lab (IIIT HYDERABAD) : <u>http://ps-iiith.vlabs.ac.in/</u>
List of Experiments

1. Numerical Representation	6. Recursion							
2. Beauty of Numbers	7. Advanced Arithmetic							
3. More on Numbers	8. Searching and Sorting							
4. Factorials	9. Permutatio							
5. String Operations	n10.Sequences							
2. Computer Programming Lab (IIIT HYDERABAD) : <u>http://cse02-iiith.vlabs.ac.in/</u>								
List of Exp	periments							
1. Numerical Approximation	6. Basic Control Flow							
2. Functions 7. Pointers								
3. Advanced Control Flow	8. Recursion							
4. Arrays	9. Expression Evaluation							
5. Structures								
	·							
Text Bo	ook(s):							
1. "How to Solve it by Computer", R.G. Dromey,	2014, Pearson.							
2. Programming in C and Data Structures, J.R.H.	anly, Ashok N. Kamthane and A.Ananda Rao,							
Education 1 ⁵	st Edition 2010							
Reference Book(s):								
1. "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2 nd Edition.								
Pearson.								
2. "Let us C", Yeswant Kanetkar, BPB publication	1S							
4 Computer Science A Structured Programmin	g Approach Using C by Bebrouz A Forouzan&							
Richard	g Approach osing c by benrouz A. Forouzand							
F. Gilberg, 3 rd Editi	on, Cengage Learning							
5. C Programming A Problem-Solving Approad Gilberg, 3 rd	ch, Behrouz A. Forouzan & E.V. Prasad, F.							
Edition, Cen	gage Learning							
6. Programming with C RemaTheraja, Oxford, 20	018 Kamthana, Dearson Education							
8. Programming in C, 3/e : A Practical Approach	by Aiay Mittal. Pearson Publication							
9. Problem Solving with C by SOMASHEKARA, I	M. T., GURU, D. S., MANJUNATHA, K.S., PHI							
Learning, 2nd Edition, 2018								
10. C Programming with problem solving, J.A. Jo	ones & K. Harrow, Dreamtech Press, 2001							
11. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-								
H Web Pee								
1. https://www.includehelp.com/c-programs/ac	dvacnce-c-examples.aspx							
2. https://www.programiz.com/c-programming	/examples							
3. <u>https://www.javatpoint.com/c-programs</u>								
4. <u>https://www.w3resource.com/c-programmir</u>	ng-exercises/							
6 https://www.jncludehelp.com/c-programmin	anse and a solved-c-programs aspy							
7. http://www.neiddeneip.com/c-programs/tag/c-r	programs-typical-programs							
/. http://www.c4learn.com/c-programs/tag/c-programs-typical-programs								

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EN1501		ENGLISH LANGUAGE LAB											
Semester		Hours /	Week	Total	Credit		Ma	ax Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
I 0 0 3 48 1.5				40	60	100							
Pre-requis	Pre-requisite: Basic English Grammar												
1. To rea2. To rhy3. To cre cor4. To 5. To mea6. To imp	expose the d and produ sensitize th thm develop stra ate more of nmunication demonstrate distinguish anings of ur provide a si bact present.	students to ce phonem e students to ategies app effective, n e his/her ab main idea afamiliar w tructured n ation that n	o develop k tic transcrip to the nuand propriately t less confro pility to writ as from spe ords from c nethodology neets the ob	tions ces of Engl o improve ontational, ce error free ecific detai ontext / for partici jectives an	and awaren ish speech one's ability more proc written cor ls and mal pants to pro d brings res	ess of Eng sounds, wo to listen a ductive pro- mmunication ke use of o epare and d sults	lish phonet ord accent, i and Use list ofessional on contextual leliver an et	ics be able to intonation and ening skills to and personal clues to infer ffective, high					
Course Ou	tcomes: Af	ter success	ful complet	ion of the c	ourse, the s	tudent will	be able to:						
CO 1	Understan English pl	nd how spectron honetics an	ech sounds id phonolog	are used to y to improv	create meater we their own	ning. Apply	y their know tion.	wledge of					
CO 2	Recognize Speak cor	e and use p fidently ar	itch pattern nd intelligib	s to signal o ly within g	complete an roups and b	id incomple efore an au	ete thought idience.	groups and					
CO 3	Discuss and make	nd respond inferences	to content and predict	of a lecture tions about	or listening spoken disc	g passage of course	rally and/or	in writing					
CO 4	Produce c paragraph	oherent and with a top	d unified pa ic sentence,	ragraphs w support, a	rith adequat	e support a ng sentenc	nd detail ar	nd can write a					
CO 5	To help th as GRE, T	e students OEFL, GN	to cultivate MAT etc.	the habit o	f reading pa	assages for	competitive	e exams such					
CO 6	Learn, pra	ctice and a denable the	er to prepa	skills neces re resume v	sary to deliv with cover 1	ver effectiv etter.	e, presentat	tion with					

	CO-PO Mapping													
	РО													50
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1									3		2		
CO2	1									2		3		
CO3	1									3		3		
CO4	1									2		3		
CO5	1									3		3		
CO6	1									3		3		
1: Low, 2-Medium, 3- High														

COURSE CONTENT						
Module - 1	8 hrs					
Introduction to Phonetics :						
Introduction to Sounds of Speech – Vowels – Consonants -						
Listening with a focus on pronunciation						
Reading Newspaper – Highlighting Vowels and Consonants						
Module – 2						
Syllabification:						
Word Stress, Rules of word stress						
Practice on Intonation and Stress	CO2					
Module – 3	8 hrs					
Listening Skills :						
Types of Listening Skills						
Active listening and anticipating the speaker						
Listening for Specific & General Details						
Listening Comprehension						
Module – 4	8 hrs					
Defining & Describing: Objects, Places and Events						
Video Speech Writing	CO4					
Review Writing (Books / Movies / Productsetc.,)						
Module – 5	8 hrs					
Reading Comprehension						
Everyday English – Grammar, Vocabulary, LSRW Skills,						
Summarizing and Note making	CO5					
Vocabulary Building						
Module – 6	8 hrs					
JAM						
Role Play						
Giving and Asking Directions	CO6					
Information Transfer						

Reference Books:

- A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian.(Macmillian),2012
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- English Pronunciation in Use. Intermediate & Advanced, Hancock, M. 2009. CUP
- Rizvi, Ashraf. M., Effective Technical Communication, Mc Graw Hill, New Delhi. 2005
- Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi. 2011.

Web Resources:

- Grammar/Listening/Writing 1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/</u> <u>Grammar/Vocabulary</u>
- English Language Learning Online
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game_ <u>Reading</u>
- <u>https://www.usingenglish.com/comprehension/</u>
- <u>https://www.englishclub.com/reading/short-stories.htm</u>
- <u>https://www.english-online.at/</u> <u>Listening</u>
- <u>https://learningenglish.voanews.com/z/3613</u>
- http://www.englishmedialab.com/listening.html_ Speaking
- <u>https://www.talkenglish.com/</u>
- BBC Learning English Pronunciation tips
- Merriam-Webster Perfect pronunciation Exercises <u>All</u> <u>Skills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org/</u>

Online Dictionaries

- Cambridge dictionary online : <u>https://dictionary.cambridge.org/</u>
- *MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>*
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE										
20PH1003		PHY	SICS FOR	MECHAN	NICAL EN	GINEERI	NG	R2020		
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	·ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
II	3	0	0	48	3	40	60	100		
Pre-requisite: Fundamental concepts of Physics										
Course Ob	Course Objectives:									
1. To gain k	nowledge o	on different	types of os	cillations a	nd ultrason	ics.				
2. To provid	le knowledg	ge on the p	henomenon	of heat trai	nsfer so as	to understa	nd a wide v	variety of		
practical	engineering	g problems								
3. To identi	ty the impo	$\frac{1}{1}$	ie optical pl	nenomenon	1.e. interfei	rence and d	iffraction r	elated to		
its Engin	eering appl	ications.	anaanta of l			. Ta sia soai				
4.10 Impar	t Knowledge	e in dasic c	oncepts of I	LASEKS al	ong with its	s Engineeri	ng applicat	ions		
6 Familiar	ize types of	sensors for	r various en	gineering a	nnlications	ing materia	15.			
Course Out	teemes. Af		ful complet	tion of the	ppileations	student will	l ha ahla ta			
Course Ou	A aquira 1	rer success	on machani	tion of the c	nd waves i	student will	i de adie to	ngingoring		
01	application	ns			ind waves I	n the persp		ngmeering		
CO 2	classify o	different m	odes of hea	t transfer ai	nd explain h	neat conduc	tion in a ba	ad		
	conduct	or and com	pound med	ia.						
CO 3	Explain	optical ph	enomenon	i.e. interfere	ence, diffra	ction using	Huygen's	wave		
	theory.									
CO 4	Realize i	mportance	of LASER	ls in Engine	ering and N	Medical app	olications.			
CO 5	Demonst	rate the kn	owledge on	characteris	stics and ap	plications of	of modern e	engineering		
	materials.									
CO 6	Identify t	he sensors	for various	engineering	g applicatio	ns				

CO-PO Mapping														
СО	PO												PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2				1						2		
CO2	3	2										2		
CO3	3	2	1									2		
CO4	3	2				1						2		
CO5	3	3	1			1						2		
CO6	3	2	2			2						2		
1: Low, 2-N	1: Low, 2-Medium, 3- High													

COURSE CONTENT

MODULE – 1

OSCILLATIONS & ULTRASONICS

hrs)

OSCILLATIONS: Mechanical simple harmonic oscillator (compound pendulum), derivation of an expression for time period; electrical simple harmonic oscillator(L.C CIRCUIT), derivation of an expression for time period; Damped harmonic oscillator-derivation of an expression for angular frequency of damped oscillations, discussion of weak damping, heavy damping, and critical damping conditions; forced

(8

mechanical oscillator- derivation of expression for amplitude and mechanical impedance in steady state; driven LCR circuit- derivation of an expression for current and electrical impedance in steady state, Resonance-amplitude resonance, velocity resonance, sharpness of resonance, quality factor.

ULTRASONICS: Introduction, Properties of ultrasonic waves; Production of ultrasonic waves by Piezoelectric method; Detection of ultrasonic waves, Applications in non-destructive testing.

At the end of the Module 1, students will be able to:

1. analyze Mechanical and electrical simple harmonic oscillator (L4).

2. analyze damped harmonic oscillator (L4).

3. explain production of ultrasonic waves by piezo-electric method (L2)

4. describe non-destructive testing of materials by ultrasonic waves(L2).

MODULE -2

WAVE OPTICS

(9 hrs)

Interference-Principle of Superposition, Interference of light, Conditions for sustained Interference ,derivation of conditions for constructive and destructive interference of reflected light from a thin film, Newton's Rings-experimental arrangement, Determination of Wavelength; Engineering applications of Interference

Diffraction-distinction between interference and diffraction, differences between Fresnel & Fraunhoffer diffractions, Fraunhoffer Diffraction at single slit(derivation, energy distribution curve), Fraunhoffer Diffraction at a Double slit (derivation, energy distribution curve), Theory of Diffraction Grating - Determination of Wavelength; Engineering applications of diffraction.

At the end of the Module 2, students will be able to:

- 1. explain the need of coherent sources and the conditions for sustained interference (L2)
- 2. describe the theory of interference of reflected light from a thin film (L2)
- 3. explain the theory of Fraunhoffer Diffraction of light at single and multiple slits (L2)
- 4. identify engineering applications of interference and diffraction (L3)
- 5. analyze the differences between interference and diffraction (L4)

MODULE-3

LASERS & OPTICAL FIBERS

(7h)

Lasers: Spontaneous & stimulated emission of radiation - Population inversion - Pumping methods – Properties of lasers (monochromaticity, coherence, directionality, brightness) – Types of lasers: Nd- YAG Laser, He–Ne Laser, Semiconductor laser; Applications

Introduction to Optical Fibers-Total Internal Reflection-Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of fibers based on Refractive index profile-advantages of optical fibres.

At the end of the Module 3, students will be able to:

- 1. describe Spontaneous & stimulated emission of radiation (L2)
- 2. Understand the basic concepts of LASER light Sources (L2)
- 3. describe the construction and working of different types of Lasers (L2)
- 4. identify the applications of lasers in various fields (L3)

MODULE-4

SENSORS

(8 hrs)

Sensors:(qualitative description only): Different types of sensors and applications; Strain and Pressure sensors- Piezoelectric, magnetostrictive sensors, Fibre optic methods of pressure sensing; Temperature sensors - bimetallic strip, pyroelectric detectors, Hall-effect sensor, smoke and fire detectors.

At the end of the Module 4, students will be able to:

- **1.** identify different types of sensors and applications (L3)
- 2. explain working of Strain and Pressure sensors (L2)
- 3. describe working of Fibre optic pressure and Temperature sensors (L2)
- 4. explain working of Hall-effect sensor, smoke and fire detectors (L2)

MODULE-5

THERMAL PHYSICS

Introduction, modes of heat transfer (conduction, convection and radiation), coefficient of thermal conductivity, rectilinear flow of heat along a uniform bar, thermal conductivity of bad conductor (Lee's disc method), heat conduction through compound media (materials in series and parallel).

At the end of the Module 5, students will be able to:

- 1. Explain different modes of heat transfer (L2)
- 2. describe Lee's disc method for finding coefficient of thermal conductivity of a bad conductor (L2)
- 3. explain rectilinear flow of heat along a uniform bar (L2)
- 4. Explain heat conduction in compound media (L2).

MODULE-6

MODERN ENGINEERING MATERIALS

Metallic glasses - Introduction, preparation of metallic glasses by RF sputtering technique, properties (structural, thermodynamic, mechanical, electrical, chemical and optical), applications of metallic glasses. Shape memory alloys (SMA) – Introduction, shape memory effect and its types, characteristics of SMA, properties of NiTi alloy, applications of SMA. Composites - Introduction, types and applications.

At the end of the Module 6, students will be able to:

- 1. understand the preparation metallic glasses RF sputtering technique (L2)
- 2. explain properties and applications of metallic glasses (L2)
- 3. realize the characteristic, applications of shape memory alloys (L2)
- 4. explain applications of composites (L2).

Total hours:

Content beyond syllabus:

1.polarization of light

Self-Study:

Contents to promote self-Learning.

intents to promote sen Learning.											
SNO	Торіс	CO	Reference								
1	OSCILLATIONS &	CO1	https://youtu.be/gnD8Se92hfk?list=PL30D1917C52D9F9B9								
	ULTRASONICS		https://youtu.be/hhJj36mQbaw?t=892								
2	WAVE OPTICS	CO2	https://youtu.be/n65gZGwiZtk								
3	LASERS	CO3	https://youtu.be/eoOM0Gx6GJc								
			https://youtu.be/RyY4PEpV2RQ								
4	SENSORS	CO4	https://youtu.be/wpAA3qeOYiI								

(8 hrs)

(8 hrs)

48 hrs

5	THERMAL	CO5	https://youtu.be/5TcPGx82Hnk
	PHYSICS		
6	MODERN	CO6	https://youtu.be/ync30eHVD8s
	ENGINEERING		
	MATERIALS		

- 1. 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" AText book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.
- 2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.
- 3. . H.J. Pain, "The physics of vibrations and waves", Wiley, 2006.

Reference Book(s):

- 1. G. Main, "Vibrations and waves in physics", Cambridge University Press, 1993.
- 2. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 2 N. Subrahmanyam, BrijLal, A Textbook of Optics, S. Chand, New Delhi, 2015
- 3. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 5. Ajoy Ghatak, *Optics*, 5th Edition, McGraw Hill, 2012

Online Resources:

- 1. http://www.peaceone.net/basic/Feynman/
- 2. http://physicsdatabase.com/free-physics-books/
- 3. http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf
- 4. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

Web Resources:

- 1. http://link.springer.com/book
- 2. http://www.thphys.physics.ox.ac.uk
- 3. http://www.sciencedirect.com/science
- 4. http://www.e-booksdirectory.com

NARAYANA ENGINEERING COLLEGE: NELLORE										
20MA1003	V	ECTOR (CALCULU TRA	US, COMP ANSFORM	LEX VAR IS (VC-CV	IABLES (/&TS)	&	R2020		
Somestor		Hours /	Week	Total	Credit		Ma	ax Marks		
Semester	L	Т	Р	hrs	С	CIE SEE		TOTAL		
II	3	0	0	48	3	40	60	100		
		Pre-	requisite:	Intermedi	ate Mather	natics				
 To apply the basic concepts of vector integration and their applications. To acquire the knowledge on the calculus of functions of complex variables. To understand the concepts of Laplace transforms and its properties. To apply the concepts of Laplace, transform to solve the ordinary differential equations. To understand the concepts of Fourier series and Fourier transforms and itsproperties. 										
Cours CO 1	e Outcom Utiliz	es: After s e different	uccessful operators	completior such as gra	of the cou dient, curl a	urse, the str and diverge	udent will a ence find th	able to: ne function		
CO 2	Evalu	ate area a	nd volum	es by fun	damental t BL-5	heorems of	of vector i	integration		
CO 3	Apply	the comp	olex functi	ons, Cauch valu	iy's integra ies BL-3	l Theoren	n to find th	he integral		
CO 4	Solv	ve the diffe	rential equ	ation by us	ing Laplace BL-3	e transform	is and its te	chniques		
CO 5	App	bly the Inve	erse Laplac	e transform	s technique BL-3	es to cover	t into time l	Domaine		
CO 6	CO 6 Find the Fourier Series and Fourier Transform for the given functions BL-2									

	CO-PO Mapping														
CO						Р	0						PSO		
	PO	PO								PO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2										PSO1	PSO 2	
CO2	3	2	2										3		
CO3	3	3	1										3		
CO4	3	3	2										2		
CO5	3	3	2										3	2	
CO6	3	3	2										2	2	
					1- Lo	w, 2-M	ledium	n, 3- H	igh						

COURSE CONTENT								
MODULE – 1	Vector Differentiation	8 H						
Introduction to vector differentiation, Definition of Scalar and Vector point functions, Definition of Vector differential operator, Gradient of a Scalar point function- Definition of Gradient of a scalar point function and properties (without proof), Definition of Directional Derivative, Definition of level surface, Different Problems, Divergence of a Vector point function- Definition, Definition of Solenoidal vector and problems, Curl of a vector point function- Definition of Curl, definition of Irrotational vector, Problems, Laplacian operator- Definition and related problems, Vector Identities-Statements(without proof)								
At the end of the Module 1, students will be able to: 1. Apply del to scalar and vector point function BL-3 2. Understand the concepts of Vector Differentiation BL-2 3. Illustrate the physical interpretation of gradient, divergence and curl. BL-2 4. Calculate directional derivatives and gradients BL-1 5. Apply Vector Differentiation concepts in fluid mechanics problems BL-3								
MODULE -2	Vector Integration	8 H						
Problems, Surface Problems, Volume Problems, Green's Statement (withou (without proof), Pr	e Integral-Explanation and formula for surface integral-Explanation and formula for volume in Theorem-Statement (without proof), Problems, Gauss t proof), Problems, Stake's-Theorem-Statement oblems.	egrals (without proof), tegral (without proof), s divergence Theorem-						
	At the end of the Module 2, students will be able t	:0:						
 Find the wor Evaluate the Apply Greer integrals BL Use the Gau Vector field. Evaluate the 	 At the end of the Wordule 2, students will be able to: Find the work done in moving a particle along the path over a force field BL-1 Evaluate the rate of fluid flow along and across curves BL-5 Apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals BL-3 Use the Gauss divergence theorem to give a physical interpretation of the divergence ofa Vector field. BL-3 Evaluate the line integrals along simple closed curves on the Plane by Green's TheoremBL-5 							
6. Apply Stokes	theorem to give a physical interpretation of the curl of a	vector field.BL-3						
MODULE-3	Complex Variable	Hours: (11L+4T)						

complex variables- differentiation: introduction to complex variables, functions of complex variabledefinition, limit and continuity of a complex function, derivative of f(z)-definition, problems, analytic function & harmonic functions- definitions, problems, cauchy-riemann equations in cartesian coordinates-statement (without proof), problems ,cauchy-riemann equations in polar coordinates-statement (without proof), problems , conjugate harmonic functions- definition, problems, milne thomson method- working rule, problems, applications to flow problem- problems. complex variables- integration: introduction to complex integration, line integration-definition, problems, cauchy's integral theorem- statement(without proof), problems, cauchy's integral formulastatement (without proof), problems, zeros of analytic functions, singularities, poles. residuesdefinition, explanation. cauchy's residue theorem- statement (without proof), problems. evaluation of integrals of

the type: (a) improper real integrals $\Box f(x)dx$ (b) $\Box f(\cos\Box, \sin\Box)d\Box$.

At the end of the Module 3, students will be able to:

- 1. Understand the functions of complex variable and its properties. BL-2
- 2. Find derivatives of complex functions. BL-1
- 3. Understand the analyticity of complex functions. BL-2
- 4. Understand the concept of differentiability, limit, continuity of complex functions andbe able to calculate limits of standard complex functions BL-2
- 5. Apply Cauchy's integral theorem and Cauchy's integral formula in engineering problems. BL-3
- 6. Understand singularities of complex functions. BL-2

MODULE-4	Laplace Transforms	8 H							
Introduction to Laplace Transforms, Definition of Laplace Transforms, Sufficient conditions for the existence of the L.T of a function, Laplace Transforms of standard Functions. First Translation (or) First Shifting theorem, Problems. Second Translation (or)Second Shifting theorem, Problems. Change of scale property, Problems. L.T. of derivatives, Problems. L.T. of integrals, Problems. Multiplication by 't', Problems. L.T. of Division by 't', Problems. Evaluation of integrals by L.T. L.T. of some special functions- Unit Step Function or Heaviside's Unit Function- Definition, problems. Unit Impulse Function or Dirac Delta function- Definition, problems. Laplace Transform of Periodic Functions- Statement (without proof), Problems.									
	At the end of the Module 4, students will be able to):							
1. Understand BL-2	the concepts of Laplace transforms and convert into time	to frequencydemine							
2. Apply Lapla	ce transform techniques to solve Ordinary differential equ	uations BL-3							
3. Understand applications	3. Understand and recall the properties of the Heaviside (unit step) function and its applications BL-2								
4. Solve the ap	4. Solve the application of Dirac Delta function by using its properties BL-3								
MODULE-5	Inverse Laplace Transforms	8 H							

Definition of Inverse Laplace Transforms, Inverse Laplace Transforms of standard Functions (without proof), Problems. Use of Partial Fractions to find Inverse Laplace Transform- problems. First Translation (or) First Shifting theorem- Statement (without proof), problems. Second Translation (or) Second Shifting theorem Statement (without proof), Problems. Change of scale property- Statement (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems. Inverse L.T to finite integrals- Statement (without proof), problems. Multiplication by Powers of 's'-Statement (without proof), Problems. Division by 's'-Statement (without proof), problems. Convolution theorem-statement (without proof), problems, Applications to Ordinary Differential Equations-Working method Explanation, problems At the end of the Module 5, students will be able to: 1. Understand the concepts of inverse Laplace Transforms and convert into frequency totime domine BL-2 2. Solve the wave functions by inverse Laplace transforms BL-3 3. Apply the Convolution Theorem to obtain inverse Laplace transforms BL-3 4. solve the higher order differential equations in limiting case condition by invers Laplace transforms BL-3 **MODULE-6** Fourier Series and Fourier Transforms 8 H Fourier Series: Introduction to Fourier Series, Periodic function-definition, properties(without proof), Euler's formulae(without proof), Dirichlet's conditions, Fourier series in $[0,2\pi]$ -formula (without proof), Problems, Fourier series in $[-\pi, \pi]$ - formula(without proof), Problems, Fourier series for even and odd functions in $[-\pi, \pi]$ - formula(without proof), Problems, Half -Range Fourier sine series in(0, π)- Formula(without proof), Problems, Half -Range Fourier cosine Series in(0, π)-Formula (without derivation), Problems. Fourier Transforms: Introduction to Fourier Transforms, Fourier integral theorem Statement (without proof), Fourier sine and cosine integrals formula(without proof), problems, Fourier Transform formula &Inverse Fourier Transform formula (without proof), Properties of Fourier Transforms (without proof), problems, Fourier Sine Transform formula & Inverse Fourier Sine Transform formula (without proof), problems, Fourier Cosine Transform formula &Inverse Fourier cosine Transform formula(without proof), problems. At the end of the Module 6, students will be able to: 1. Find the Fourier series expansion of the given function. BL-1 2. Apply Fourier series and its properties of various engineering problems. BL-3 3. Find the periodic solutions to the differential equation by using Fourier series. BL-1 4. Understand the properties of periodic functions, represent it as a Fourier BL-2 5. Apply the concepts of Fourier transforms to Find impulse BL-3 6. Make use of the Fourier transforms and its inverse in practical applications of electronics engineering. BL-3 Total hours 48 H

Comp	lex	Fou	rier	series
Comp	U 21	100	I ICI	501105

- 1. Complex Fourier series
- 2. Parseval's Identity for Fourier Transforms

Self-Study: Contents to promote self-Learning:										
SNO	Topic	CO	Reference							
1	Vector Differentiation	CO1	https://youtu.be/a19x_YG0oLg							
2	vector integration	CO2	https://youtu.be/pfCwRLK29h4https://youtu.be/ KHiw9Vs-aLM							
3	Laplace transforms	CO3	<u>https://youtu.be/luJM137-</u> nsohttps://youtu.be/EDVJotmT584							
4	Inverse Laplace transforms	CO4	https://youtu.be/9NqdBXNyJPkhttps://youtu.be/0Zl ThUd-yyw							
5	5 Fourier series		https://youtu.be/4cSZDHxyBf4							
6	Fourier transforms	CO6	https://youtu.be/GtXmS5YH7XM							

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. N.P. Bali and Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publication.
- 3. Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers

Reference Book(s):

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
- 2. Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. Dr. M Anita, "Engineering Mathematics-I", Everest Publishing House, Pune.

Online Resources/ Web References:

- 1. http://keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advancedengineering - mathematics-ktuebook-download.html
- 2. <u>http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks</u> .
- 3. <u>http://www.efunda.com/math/math_home/math.cfm</u>
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. <u>http://www.sosmath.com/</u>
- 6. <u>http://www.mathworld.wolfram.com</u>/

		l	NARA	YAN	A ENG	INE	ERING	COI	LEG	E:: NI	ELLO	RE			
					MAT	TER	IAL S	SCIE	ENCE	E				R2	2020
20ES1008					7 1	-	TT (1		1 1.	1		M			
Semester	-			H/W	eek		Total	(OIE	Max	Marks	T O	
			1		P		hrs		<u>C</u>	(SE	SE	10	TAL
		5	0		0	<u> </u>	48		3	4	0	60		. 100)
Pre-Requi	isite :	I'o ha	ve bas	ic kno	owledge	in Er	ngineer	ing m	athema	itics ai	nd Eng	gineerir	ng Che	mistry	•
Course O	bjecti	ves:	mo of	matal	and tr	nos of	faolida								
$\frac{1}{2}$ To	undersi	tand a	about e	emilil	s and ty	iagrar	ns and	nrone	rties of	steel	and ire	on			
2. To	learn a	bout 1	heat tr	eatme	nt of ste	el.	no una	prope		51001		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
4. To	study a	bout	proper	ties a	nd struc	tures	of cera	mic n	naterial	s.					
5. To	study a	bout	proper	ties a	nd struc	tures	of com	posite	mater	ials.					
Course Outcomes: After successful completion of the course															
CO1	Learn	ı aboı	it bond	ls, cry	/stalliza	tion o	of metal	s and	determ	ninatio	n of g	rain siz	tes of r	netals	and
~~~	alloys	s and	consti	tution	of allo	ys. (B	L-1)								
CO2	Unde	rstand	d abou	t cons	struction	n of ec	quilibri	um dia	agrams	s and t	o study	y about	phase	:	
CO3	Unde	rstand	d nron	, erties	and stri	icture	es of var	ious f	errous	and n	on-fer	rous m	etals a	nd allo	VS
000	(BL-2	2)	a prop	ci ties	und stre	ieture	5 01 vu	1045 1	cirous	und n		ious m	ctuis a	na ano	y ⁵ .
CO4	Know	vand	apply	the co	oncepts	of hea	at treatr	nent c	f alloy	s.(BL	-3)				
CO5	Learn	Learn about various ceramic materials. (BL-1)													
CO6	CO6 Learn about various composite materials. (BL-1)														
CO-PO Mapping															
	PO PO PO PO PO PO P P PO PO PO PO PS PS									PS					
		1	2	3	4	5	6	07	0	9	10	11	12	0	0
									8					1	2
CO	1	1													
CO	2	2													
CO	3	2													
CO	4	3													3
CO	5	1					1	1						1	1
CO	)6	1					1	1						1	1
				1	1:I	Low.2	2-Mediu	.m.3-F	ligh	I		1			
							RSE CO	)NTE	NT						
					_										
	MC	DUI	LE - 1			S	Structu	re of l	Metals				8 H		
Bonds in	Solids	– Me	etallic	bond	- crysta	llizati	ion of 1	netals	, grain	and g	rain b	oundar	ies, eff	fect of	
grain bour	ndaries	on th	e prop	erties	of meta	al / all	loys – c	letern	inatio	n of gr	ain siz	ze.			
Constitut	ion of A	Alloy	s:Ne	cessit	y of allo	oying,	types of	of soli	d solut	ions,					
At the end o	of the V	Iodul	e1.stu	lents	will be	able to	0:								
1. A	Acquire	e knov	wledge	e abou	it variou	is bon	nds in s	olids.	(BL-3)	)					
2. le	earn ab	out g	rains a	and de	etermina	tion o	of grain	sizes	(BL-2	2)					
3. u	inderst	and th	ne con	cepts	of const	itutio	on of all	oys. (	BL-2)						
		F )				Fauil	librium	ofD	ogron	26				<u>е п</u>	
IMIC Trans		L -2	oth a -1-	of	not	equil			agran	15 no To-	morel	iom al	lov cru	o H	
Exp	erimen	ina m	ethods	or co	of ollow		equilib	rium (	nagran	us, Iso	morph	usin al	ioy sys	toma	
equilibriu		ing a		ung (	or alloy	s, Lev	ver rule	, cori	ng mis	cioilit	y gaps	, eutec	uc sys	tota	
ollotrores		ig int	ermed	nate p	mases, ]	perite	cuc real	rolati	I rans	botro	uons 1	n the s	solid S	iaie –	
anouropy,		oiu, p		.oiu re	cactions	, phas	se rule,	relatio	Justup	Detwe	en equ	11110F1U	in ulag	grams	
and prope	rues of	i allov	<b>yS</b> .												

At the end of theModule2, students will be able to:

- 1. Learn about construction of equilibrium diagrams. (BL-2)
- 2. Understand eutectic and eutectoid systems. (BL-2)
- 3. Learn about phaserule and to study important binary phase diagrams. (BL-2)

MODULE-3	Metals & Alloys	8 H

**Cast Irons and Steels :** Structure and properties of White Cast iron, Malleable Cast iron, grey cast iron, Spheriodal graphite cast iron, Alloy cast irons. Classification of steels, structure and properties of plain carbon steels, Low alloy steels, Hadfield manganese steels, tool and die steels.

#### **Non-ferrous Metals and Alloys:**

Structure and properties of copper and its alloys, Aluminium and its alloys, Titanium and its alloys. At the end of theModule3, students will be able to:

- 1. Understand the structure and properties of cast iron.(BL-2).
- 2. Understand the structure and properties of steels. (BL-2)
- 3. Learn about structure and properties of Nonferrous metals and alloys. (BL-2).

M	ODU	LE-4			Hea	at treat	tment	t of Alloys				8 H	
 C 11	•	1	-	-	1			1.		 1	•	TTT	

Effect of alloying elements on Iron – Iron carbon system, Annealing, normalizing, Hardening, TTT diagrams, tempering , Hardenability, surface - hardening methods, Age hardening treatment,.

Atthe endof theModule4, students will be able to:

- 1. Understand about effect of alloying elements on iron. (BL-2)
- 2. Learn and understand about hardenability and hardening methods...(BL-2)
- 3. Know the concepts of cryogenic treatment of alloys. (BL-2)

MODULE-5	Ceramic & Plastic	8 H								
	Materials									
Ceramic materials: Crystalli	ne ceramics, glasses, cermets, abrasive	e materials, -definition,								
properties and application										
Plastics: Thermo set plastics & Thermo plastics- applications										
Atthe endof theModule5, students v	Atthe endof theModule5, students will be able to:									
1. Learn about crystalline cer	amic materials(BL-2)									
2. Learn about crystalline ab	rasive materials(BL-2).									
3. Understand the properties	of above materials.(BL-2).									
	Composito Motoriala	0 11								
WIODULE-0	Composite Materiais	δП								
Composite Materials: Classif	ication of composites, various methods of	of component fracture of								
composites, particle – reinforce	ed materials, fiber reinforced materials, r	netal ceramic mixtures.								
At the end of theModule6, student	s will be able to:									
1. Know about classification	of composites. (BL-2)									
2. Understand about compon	ent manufacture of composites. (BL-2)									
3. Learn about reinforced ma	terials.(BL-2)									
		Total : 48 h								

#### **Content beyond syllabus:**

- 1. Nano Materials
- 2. Biomaterials
- 3. Polymers

# Self-Study:

Contents to promote self-Learning:

SNO	Topic	CO	Reference
1	Effect of grain	CO1	https://en.wikipedia.org/wiki/Grain_boundary
	boundaries on the properties		
	of metal		
2	Construction of	CO2	https://www.sciencedirect.com/topics/engin
	equilibrium		eering/equilibrium-phase-diagram
	diagrams		
3	Classification of	CO3	https://mme.iitm.ac.in/vsarma/mm5025/SS.pd
	steels		f
4	Cryogenic treatment	CO4	https://www5.kau.se/sites/default/files/Doku
			ment/subpage/
5	Crystalline ceramics	CO5	https://www3.nd.edu/~amoukasi/CBE40361/
			Lecture Cera
			mics_2014.pdf
6	Classification of	CO6	https://www.researchgate.net/figure/Class
	composites		ification-of-composite-materials-a-Based-
			on-matrix-materials-and-b-
			based-on_fig1_280921582

### Text Book(s):

- 1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017
- 2. A Text of Essential of Materials science and engineering/ DonaldR.Askeland/Thomson.2013
- .3. Material Science and Metallurgy/ Dr.V.D.Kodgire, 2011

#### **Reference Book(s):**

- 1. Science of Engineering Materials / B.K.Agarwal,2017.
- 2. Engineering materials and metallurgy/R. K. Rajput/S.Chand,2015.
- 3. Engineering Materials and Their Applications R. A Flinn and P K Trojan / Jaico Books 1995.

#### **OnlineResources:**

- 1. https://libguides.cam.ac.uk/materialsscience
- 2. <u>https://www.sdsmt.edu/Academics/Library/Resources/SubjectGuide/?guide=Materials%20and%2</u> <u>0Metallurgical%20Engineering</u>
- 3. <u>https://libguides.wpi.edu/c.php?g=355327&p=4998512</u>

### WebResources:

- 1. https://www.youtube.com/watch?v=IW4GX3W18ds
- 1. https://www.youtube.com/watch?v=S96zHUSxZc0
- 2. <u>https://www.youtube.com/watch?v=IkYimZBzguw</u>

NARAYANAENGINEERINGCOLLEGE:NELLORE										
20ES1003	PR	PRINCIPLES OF ELECTRICAL AND ELECTRONICS R2020								
	ENGINEERING									
Semester	ŀ	Iours /Weel	K	Total	Credit		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
II	3	0	0	48	3	40	60	100		
Pre-requisite: Fundamental concepts of Electrical Circuits Analysis and Electro Magnetic Fields.										
Basic Knowledge on Semiconductor materials.										
	_									
Course O	bjectives:									
1. A	ole to unders	stand the per	rformance of	of Electrica	al circuit ele	ements.				
2. To	o understand	the Princip	le of Opera	tion of elec	ctrical mach	nines.				
3. Al	ole to Explai	n Typical A	C Power S	supply sche	eme.					
4. To	provide con	mprehensive	e idea abou	t working	principle, of	peration and	d applicatio	ns of PN		
Di	ode.	•								
5. To	provide con	mprehensive	e idea abou	t working	principle, of	peration and	d applicatio	ns of BJT		
6. To	provide con	mprehensive	e idea abou	t working	principle, of	peration and	d applicatio	ns of		

 MOSFET.

 Course Outcomes: After successful completion of the course, the student will be able to:

 CO1
 Understand DC and AC electrical circuit analysis.(BL-2)

 CO2
 Demonstrate marking miniciples of temperature and electrical marking (PL 2)

CO2	Demonstrate working principles of transformers and electrical machines.(BL-2)
CO3	Understand the generation, Transmission and distribution of Electrical Power.(BL-2)
<b>CO4</b>	Understand the operation, characteristics of PN junction diode. (BL-02)
CO5	Understand the operation, characteristics of BJT. (BL-02)

**CO6** Explain the concept of MOSFET and applications of MOSFET.(BL-02)

CO-POMapping															
		PO											PSO		
СО	PO	PSO	PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	1										2	3	
CO2	1	2	2										2	3	
CO3	2	3	2										3	3	
CO4	1	2	1									1	1		
CO5	1	2	1									1	1	1	
CO6	1		1									1	1		
1:Low,2-Medium,3-High															

# COURSECONTENT

MODULE-1	DC & AC Circuits	08Hours						
Electrical circuit elemen	ts (R- L and C) - Kirchhoff law	vs- Series and parallel connection						
ofresistanceswithDCexcitat	ion.SuperpositionTheorem-Representation	ofsinusoidalwaveforms-peak						
andrmsvalues-phasorrepres	entation-realpower-reactivepower-apparent	t.						
At the end of theModule1,st	tudents will be able to:							
1. Understand the	Basic Electrical circuit elements.(BL-2)							
2. Able to understand the parallel connection of resistances.(BL-2)								
3. Demonstrate on real power, reactive power and apparent power.(BL-2)								
MODULE-2	MODULE-2 DC & AC Machines							

Principle and operation of DC Generator-EMF equations- principle and operation of DC Motor–Performance Characteristics of DC Motor-Speed control of DC Motor–Principle and operation of Single Phase Transformer -OC and SC test on transformer-principle and operation of Induction Motor. At the end of the Module2, students will be able to:

- 1. Explain principle and operation of DC Generator & Motor.(BL-2)
- 2. Understand the principle and operation of DC Motor.(BL-2)
- 3. Explain operation of transformer and induction motor.(BL-2)

1 1									
MODULE-3	<b>Basics of Power Systems</b>	08Hours							
Layout & operation of Hy	dro, Thermal, Nuclear Stations - Solar & wir	d generating stations - Typical AC							
Power Supply scheme – El	Power Supply scheme – Elements of Transmission line–Types of Distribution systems : Primary & Secondary								
distribution systems.									
At the end of the Module3.	students will be able to:								
1. Understand the wo	orking of Electrical power generating stations.	BL-2)							
2. List the varies Ele	ments of Transmission line.(BL-1)	,							
3. Explain Types of I	Distribution systems.(BL-2)								
MODULE-4	DIODE APPLICATIONS	08Hours							
Operation of PN junction d	iode, Volt-Ampere Characteristics, Diode Resi	stance, Diode as a							
Rectifier, Halfwaverectifier,	Fullwaverectifier,Rectifierparameters,Rectifie	rswithFilters.							
1. Describe operation	and characteristics of Diode.(BL-02)								
2. Study various Bias	sing techniques of diode.(BL-02)								
3. Explain the constr	uction and operation of rectifiers.(BL-02)								
MODULE-5	BIPOLARJUNCTIONTRANSISTOR	08Hours							
BipolarJunctionTransistor(1	BJT)–TypesofTransistors,OperationofNPNandl	PNPTransistors, Input-							
OutputCharacteristicsofBJ	T-CB,CEandCCConfigurations,Relationbetwee	n IC, IB and IE, Transistor.							
1. Describe operation	and characteristics of transistors.(BL-02)								
2. Study various cont	figurations of Transistor.(BL-02)								
3. Understand the Ar	halog and digital applications of Transistor.(BL	-02)							
MODULE-6	METAL-OXIDE-SEMICONDUCTOR	09Hours							
	FIELD-EFFECTTRANSISTOR								
Introduction to MOSFET,	Construction of depletion mode and enhance	ement mode of NMOS and PMOS,							
Drain characteristics of MC	OSFET, Transfer Characteristics of MOSFET,	MOSFET as Switch, CMOS Inverter							
and it's Characteristics.									
11. Explain the constru	action and operation of enhancement mode NM	IOS.(BL-02)							
12. Study the character	ristics of MOSFET.(BL-02)	` '							
13. Explain various ap	plications of MOSFET.(BL-02)								
		Total hours: 48hours							

# Content beyond syllabus:

- 1. OCC characteristics of DCgenerator
- 2. BJT & FET Biasing.

#### Self-Study:

Contentstopromoteself-Learning:

SNO	Module	Reference
1	DC & AC Circuits	https://nptel.ac.in/courses/117/106/117106108/
2	DC &AC Machines	https://nptel.ac.in/content/storage2/MP4/108102145 mod02lec03.mp4 https://nptel.ac.in/courses/108/102/108102146/
3	Basics of Power Systems	https://nptel.ac.in/content/storage2/courses/1051051 10/pdf/m5101.pdf https://onlinecourses.nptel.ac.in/noc18_ee15/unit?u

		nit=5&lesson=9
4	Diode Applications	https://www.youtube.com/watch?v=IMoJUqDlSQs& t=12s
5	BJT	https://www.youtube.com/watch?v=zbwqk69VcQ M
6	MOSFET	https://www.youtube.com/watch?v=g30xTHas3aU

1. D.P.Kothari and I.J.Nagrath-"Basic Electrical Engineering"-Tata Mc GrawHill-2010.

2. Basic Electrical and Electronics Engineering, M.S.Sukhija, T.K.Nagsarkar, Oxford University.

3. V.K.Mehta & Rohit Mehta, "Principles of Electronics"–S.Chand–2018.

4. Basic Electrical and Electronics Engineering, S.KBhattacharya, Pearson Education, 2012.

#### **Reference Book(s):**

1. L.S.Bobrow-"Fundamentals of Electrical Engineering"-OxfordUniversityPress-2011.

2. E.Hughes- "Electrical and Electronics Technology"-Pearson-2010.

3. J.Millman, C.Halkias, "Electronic Devices and Circuits", TataMc-GrawHill,

4thEdition,2010.4.David A.Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford

University Press, 2009.5.Salivahanan,Kumar,Vallavaraj,"ElectronicDevicesandCircuits",TataMc-

GrawHill,Second Edition.

#### Online Resources /Web References:

1.<u>https://nptel.ac.in/courses/108/105/108105159/</u>

2.https://nptel.ac.in/courses/108/105/108105066/

3.<u>https://nptel.ac.in/courses/108/105/108105066/</u>

4.<u>https://youtu.be/L28F1Oenyds</u>

5. <u>https://www.youtube.com/watch?v=0C4uxtS-tlQ</u>

6. https://www.youtube.com/watch?v=0RSI-QJ5-4A

7. http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm

8. https://www.researchgate.net/publication/329252017_Analysis_Study_In_Principles_Of_Operation_Of_

Dc_Machine

9. https://www.engineering.com/

10. <u>https://www.electrical4u.com/p-n-junction-diode/</u>

11. https://nptel.ac.in/content/storage2/courses/117101106/downloads/L23.PDF

NARAYANA ENGINEERING COLLEGE:NELLORE											
20PH1503	EN	ENGINEERING PHYSICS LAB-1(MECHANICAL ENGINEERING) R2020									
Semester	Н	ours / Wee	k	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
ii	0	0	2	36	1	40	60	100			
Pre-requisi	te: Nil										
Course Obj	ectives:										
To provide	e student	to learn a	about som	e importa	nt experim	ental tech	niques in	physics with			
knowledge	in theoreti	cal aspects	so that th	ey can exce	el in that p	articular fie	eld. To pre	pare students			
for perform	ing require	ment analy	sis and des	ign of varie	ty of applic	ations.					
To enable th	ne students	to underst	and the co	oncepts of	interferenc	e and diffra	iction , the	ir applications			
and role of	optical fibre	e paramete	rs in comm	unication.							
To educate	students t	o recogniz	e the appli	cations of	aser in finc	ling the wa	velength,	slit width and			
its role in di	ffraction st	udies									
To make the	e students t	o identify t	he importa	ance of sen	sors						
Course Out	comes: Af	ter success	ful compl	etion of th	e course, tl	he student	will be ab	le to:			
CO 1	learn imp	ortant con	cepts of ph	ysics throu	gh involven	nent in the	experimen	ts by applying			
	theoretica	al knowledg	ge.								
CO 2	understar	d the con	cepts of int	terference	and diffract	tion , their	application	s and role of			
	optical fib	er paramet	ers in com	munication							
	•										
CO 3	recognize	the applica	ations of la	ser in findi	ng the wa	velength, s	slit width	and its role in			
	diffractior	n studies				_ `					
CO 4	identify th	e importan	ce of senso	rs							

CO-PO Mapping														
со		PO PSO										Ö		
	PO	РО	PO	РО	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1										2		
CO2	2	1				1						2		
CO3	2	1				1						2		
CO4	2	1										2		
1: Low, 2-Medium, 3- High														

COURSE CONTENT	СО
Task 1 - Determination of spring constant of springs using Coupled Oscillator	
objective:To study normal modes of oscillation of two coupled pendulums and to measure	CO 1
the normal mode frequencies as well as spring constant.	
Two identical compound pendulums are coupled by means of a spring. Normal mode	
oscillations are excited and their frequencies are measured.	
Task - 2 Determination of the rigidity modulus of the material of a given wire using Torsional	
Pendulum	
objective: To determine the rigidity modulus of the material of a given wire using Torsional	CO 1
Pendulum	
A torsion pendulum consist of a disk-like mass suspended from thin rod. When the mass is	

twisted about the axis of the wire , the wire exerts a torgue on the mass, tending to rotate it back							
to its original position. If twisted and released, the mass will oscillate back and forth to its original							
position executing a simple harmonic motion. This experiment can be used to assess the shear							
elastic behavior of a given material .							
Task -3 . Determination of thermal conductivity of a bad conductor (Lee's disc method).							
objectives: 1.To know about different modes of heat transfer, via conduction, convection and	CO 1						
radiation							
2.To find the coefficient of thermal conductivity of a bad conductor by Lee's method.							
Thermal conductivity (k), is the property of a material that indicates its ability to conduct heat.							
Conduction will take place only if there exists a temperature gradient in a solid (or stationary							
fluid) medium. Conductive heat flow occurs in direction of the decreasing temperature. This							
transfer will continue until thermal equilibrium is reached. The rate at which the heat is							
transferred is dependent upon the magnitude of the temperature gradient, and the specific							
thermal characteristics of the material. Thermal conductivity is quantified in the units of W/mK,							
<b>TASK -4</b> . Measurement of radius of curvature of a lens by Newton's rings method.							
Objective:To determine the wavelength of sodium light by Newton's Ring method	CO 2						
The key idea behind Newtons ring experiment is the thin film formation between a plane-							
convex lens and a glass plate. Due to this thin film of air a path difference occurs in the							
waves which reflect from the lower surface of the lens and the top surface of the glass plate.							
As a result of it, they superimpose and develop the interference pattern.							
TASK -5 To determine the numerical aperture and acceptance angle of a given optical fiber							
Objective: To determine the numerical aperture and acceptance angle of a given optical fiber.	CO 2						
In optical fibres light travel by multiple total internal reflections. Numerical aperture represents							
light gathering powerof optical fibre. Acceptance angle represents maximum limiting angle at							
one end of optical fibre for the liglht ray to travel by multiple total internal reflections through							
the core region of thefibre.							
1. Optical fibers may be used for accurate sensing of physical parameters and fields like pressure,							
temperature and liquid level.							
2. For military applications like fiber optic hydrophones for submarine and underwater sea							
application and gyroscopes for applications in ships, missiles and aircrafts.							
TASK-6 Determination of wavelength by plane diffraction grating normal incidence method							
Objectives: 1.To understand the types of diffraction	CO 2						
2. To familiarize with the principle of diffraction in plane transmission grating							
3. To know the procedure for standardization of the grating							
4.To determine the wavelengths of prominent spectral lines of mercury spectrum.							
An arrangement, which is equivalents in its action to a large number of parallel slits of same							
width separated by equal opaque spaces is called diffraction grating. It is constructed by ruling							
fine equidistant parallel lines on an optically plane glass plate with the help of a sharp diamond							
point.							
TASK -7 Dispersive power of a diffraction grating							
objective: To determine Dispersive power of a diffraction grating	CO 2						
When white light passes through a grating, different wavelengths undergo different angles of							

diffraction. Hence white light split up into different colours and diffraction spectra of different	
orders will be produced. The angular dispersion or dispersive power of a grating is defined as the	
rate of change of angle of diffraction with the change of wavelength in a particular order of the	
spectrum.	
TASK -8 Determination of wavelength of LASER light using diffraction grating.	
Objectives :1. To demonstrate diffraction nature of lasers	CO 3
2. To determine the wavelength of the given Laser source.	
TASK -9 . Laser: Diffraction at a single slit	
Objective:Determination of width of a given single slit using laser diffraction method	CO 3
Laser beam has high monochromaticity, coherence and directionality. Hence it forms a clear	
diffraction pattern and we can measure width of a single slit accurately.	
TASK -10 Laser: Diffraction at a double slit	
Objective:Determination of width of a given double slit using laser diffraction method.	CO3
With this experiment we can demonstrate diffraction nature of lasers and can measure width of	
a double slit accurately.	
Additional Experiments:	
TASK -11 Determination of temperature change using Strain Guage sensor	
Objective: Determination of temperature change using Strain Guage sensor	CO 4
TACK 12: Determination of processory variations using Starin Cuase sources	
TASK -12: Determination of pressure variations using Strain Guage sensor.	
Objective: Determination of pressure variations using Strain Guage sensor.	CO4
Virtual lab: 1) Laser beam divergence and spot size	
https://vlab.amrita.edu/?sub=1&brch=189∼=342&cnt=1	
2. Michelson's Interferometer- Wavelength of laser beam	
https://vlab.amrita.edu/?sub=1&brch=189∼=1106&cnt=1	
3. Melde's String Apparatus	
https://vlab.amrita.edu/?sub=1&brch=201∼=882&cnt=1	
Self-Study:	
Contents to promote self-Learning:	

SNO	Торіс	СО	Reference
1	Newton rings		https://youtu.be/PU-SeNfIRcs
2	Diffraction grating experiment - Wavelength of		https://youtu.be/N0lxwqANsd4
	mercury spectrum		
3	Experiment - Laser		https://youtu.be/764Fr0mnOrQ
	Grating-		
	Determination of		
	Wavelength of		
	Given Laser Source		

1. C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012. 2. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

### Reference Book(s):

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

- 2. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.
- 3. Dr.Ruby Das, C.S.Robinson, Rajesh Kumar and Prasanth Kumar "A text book of Engineering Physics Practical", 1st edition, Sahu University Science Press, 2010.

4. Jayaraman, "Engineering Physics Laboratory Manual", 1st edition, Pearson Education, 2014.

### Web Resources:

1. <u>https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB</u>.

<u>https://www3.nd.edu/~wzech/LabManual_0907c.pdf.</u>

3. https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.

NARAYANA ENGINEERING COLLEGE:NELLORE												
20ES1505		ENGINEERING & ITWORK SHOP										
PART – A ENGINEERING WORK SHOP												
Semester		Hours / Week			Total	Credits	Max Ma	Max Marks				
		L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II		0	0	4	64	2	40	60	100			
Pre-	requ	uisite: Ba	sic mathema	atics.								
Course Objectives:												
1. 1	1. To know basic workshop processes and adopt safety practices while working with											
	arious tools and equipment.											
2. 1	to identify, select and use various marking, measuring, holding, striking and								lig allu			
3 T	'o kr	$\frac{1}{2}$ $\frac{1}$	equipment. t the internal	narts of a	computer	assembli	ng a com	nuter fi	om the			
5. 1 n	parts preparing a computer for use by installing the operating system											
4. T	'o ga	in knowle	dge about th	e usage of	tools like	Word p	cocessors.	Spread	dsheets.			
Р	rese	ntations.	6	0		1	,	1	,			
5. T	o lea	arn about	Networking	of compute	ers and use	Internet f	acility for	Brows	ing and			
S	earc	hing										
Course	e Ou	tcomes:	After succes	sful compl	etion of the	ne course,	student w	vill be a	able to:			
$\frac{CO1}{CO2}$	Un	derstand t	he safety asp	ects in usir	ng the tool	s and equi	pment.(BI	<u>2)</u>				
	Ap	ply tools f	or making mo	odels in resp	pective trac	les of engit	neering wo	orkshop.	(BL-3)			
003	Ap	ply basic	electrical eng	gineering K	nowledge	to makes n	iouse wiri	ng circi	itts and			
CO4	Un	derstand t	o disassembl	(DL-3) le and assei	nhle a Per	sonal Com	nuter and	nrenar	e the			
004	Co	mputer re	adv to use(B	L-2)		sonar con	iputor und	propur	e the			
CO5	Ap	ply know	ledge to Inter	connect tw	o or more	computers	s for infor	mation	sharing.			
			C			Ĩ			(BL-3)			
		CO	URSE CON	TENT (TR	RADES FO	OR PRAC	TICE)					
			T	rade -1 Ca	arpentry (	6 H)						
Familia	rity	with diff	erent types	of woods	and tools	used in	wood wo	rking a	and make			
tollowii	ng jo	ints from	out of 300x4	0x25mms	of wood st	tock.						
a) Hall-	-Lap	) JOIIII. and Theorem	. is int									
D) MOR	ise a	ind Ten of	n joint	<b>T</b> 1 2 1		<b>(T</b> )						
<b></b>	•			Trade-2	fitting (6)	H)	<u>.</u>		600			
Familia	rity	with diffe	rent types of	tools used	in fitting a	ind do the	fitting exe	ercises of	out of 80			
X 50 X 5	mn האו	1 IVI.S. StO Dovetoil f	CK.									
a) v-fit b) Dovetall fit												
Trade - 3 Sheet Metal Work (6 H)												
Familia	ritv	with diffe	rent types of	tools used	in sheet m	etal worki	ng. Devel	opment	s of			
following sheet metal job from out of 22 or 20 guage G.I. sheet.												
a) Tapered tray b) Conical funnel												
# Trade - 4 Electrical House Wiring (6 H)

Familiarities with different types of basic electrical circuits and make the following electrical connections.

a) Two lamps in series

b) Two way switch

c) Tube light

d) Two lamps in parallel with 3 pin plug and switches

# Trade 5 – Welding(8H)

Familiarity with different types of tools used in welding and do the following welding exercises.

1. Single V butt joint 2.Lap joint

# Text Book(s):

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited,Mumbai.
- KalpakjianS.and StevenS.Schmid, "Manufacturing Engineering and Technology" 4thEdition, Pearson Education IndiaEdition, 2002.
- 3. P. Kannaiah&K. L. Narayana "Workshop manual" 2ndEd., Scitech publications Pvt.Ltd.,Hyderabad,2008.

# **Reference Book(s):**

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

# WebResources:

- 1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf
- 2. <u>http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826</u>

# PART-B IT WORKSHOP LAB

#### **Course Objectives:**

- 1. To provide technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

Course Outcomes: After successful completion of the course, student will be able to:							
CO 1	Understand functionalities of a computer and operating system.	(BL-2)					
CO 2	Practice Word processors, Presentation and Spreadsheet tool.	(BL-2)					
CO 3	Connect computer using wired and wireless connections.	(BL-2)					

CO-PO Mapping															
	PO													PSO	
	PO												PSO	PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1														
CO2	1														
CO3	1														
	1: Low, 2-Medium, 3- High														

COURSE CONTENT	CO
Task-1 Learn about Computer (4H)	
Identify the internal parts of a computer and its peripherals. Represent the same	CO 1
in the form of diagrams including Block diagram of a computer. Write	
specifications for each part of a computer including peripherals and	
specification of Desktop computer. Submit it in the form of a report.	
Task -2 Assembling a Computer (4H)	
Disassemble and assemble the PC back to working condition. Troubleshoot the	CO 1
computer and identify working and non-working parts. Identify the problem	
correctly by various methods available (eg: beeps). Record the process of	
assembling and trouble-shooting a computer.	
Task-3 Install Operating system (2H)	CO 1
Install Linux, any other operating system (including proprietary software) and make	
the system dual boot or multi boot. Record the entire installation process.	
TASK-4 Operating system features (2H)	CO 1
Record various features that are supported by the operating system(s) installed.	
Submit a report on it. Access CD/DVD drives, write CD/DVDs, access pen drives,	
print files, etc. Install new application software and record the installation process.	
TASK-5 Word Processor (6H)	CO 2
Create documents using the word processor tool. Tasks to be performed are	
inserting and deleting the characters, words and lines, Alignment of the lines,	
Inserting header and Footer, changing the font, changing the colour, including	
images and tables in the word file, making page setup, copy and paste block of text,	
images, tables, linking the images which are present in other directory, formatting	
paragraphs, spell checking, etc. Prepare project cover pages, content sheet and	
chapter pages at the end of the task using the features studied. Submit a report of	
the word processor considered.	
Create documents using the word processor tool. Mail Merge in word processor for	
creating appointment orders for 10 employee records in excel.	
TASK-6 Spreadsheet (4H)	CO 2
To create, open, save the spreadsheet and format them as per the requirement.	
Some of the tasks to be practiced are Managing the worksheet environment,	
creating cell data, inserting and deleting cell data, format cells, adjust the cell size,	
applying formulas and functions, preparing charts, sorting cells, working with pivot	
tables and charts. Submit a report of the Spreadsheet application considered.	
TASK-7 Presentations (6H)	CO 2
To create, open, save and run the presentations, Select the style for slides, format	
the slides with different fonts, colors, create charts and tables, insert and delete text,	
graphics and animations, bulleting and numbering, hyperlink, set the time for slide	
show, Record slide show. Submit a report of the Presentation tool considered.	
TASK-8 Wired network & Wireless network (4H)	CO 3
Select a LAN cable, Identify the wires in the cable, Define the purpose of each	

wire, Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter,	
Test the cable using LAN tester, Connect two or more computers using cross and	
straight cables, Configure the computers, share the data between the computers.	

Additional Experiments:					
TASK -1 IoT	CO 3				
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD					
card, Connect the cables, Install Raspbian (or any other) operating system,					
Configure Wi-Fi, remotely connect to your Raspberry Pi.					
TASK -2 OUTLOOK, MACROS	CO 3				
Practice the following tasks and submit report					
A. Configure outlook and access mails.					
B. Create Macros in word and spreadsheet tools					

# Text Book(s):

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

2. "MOS study guide for word, Excel, Powerpoint& Outlook Exams", Joan Lambert, Joyce Cox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

#### **Reference Book(s):**

1. Rusen, "Networking your computers and devices", PHI

2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

# **On-line/Web Resources:**

https://turbofuture.com/computers/Dissassembling-and-Assembling-the-computer-system https://www.instructables.com/id/Disassemble-a-Computer/

https://www.windowscentral.com/how-do-clean-installation-windows-10

https://www.tutorialspoint.com/ms_excel_online_training/index.asp

https://www.raspberrypi.org

		NA	RAY	ANA J	ENGI	VEER	ING C	OLLF	GE: I	NELL(	ORE			
20ES1511					Mate	rial Sc	ience	Lab					R2	2020
Semester		Hours / Week Total Credits Max Marks												
		L	Т		Р		hrs	C		CIE SEE			TO	TAL
II	0 0 2 32 1 40 60 100												00	
Pre-requisite: To have basic knowledge in Engineering Chemistry.														
Course Objectives:														
1. To Fig	<ol> <li>To impart knowledge on metallographic techniques for studying the microstructures of alloys.</li> </ol>													
3. To per	3. To perform heat treatment of various steels													
4. TogainknowledgeonCrystalstructureandmicrostructuresofuntreatedsteels.														
<b>Course Outcomes</b> : After successful completion of the course, the student will be able to														
CO1	Desci	ribe th	e relati	on bet	ween r	nicrost	tructur	e and p	propert	ties of t	ierrous	alloys	. (BL-2	)
CO2	Unde	rstand	variou	is crys	tal stru	ictures	(BL-1	)	(D)					
CO3	Study	/ thern	nosettu	ng of f	errous	and no	onterro	$\frac{1}{2}$ allo	ys (BI	<u>1)</u>				
CO4	Deter	mine	the stre	ngth a	nd mag	gnetic	detects	$\frac{1}{1}$ s of ma	iterials	3. (BL-:	3)			
	1					<u>20-ru</u> p	<u>JMap</u>	ping					<u> </u>	DGO
	PO	PO	PO	PO	PO	I PO	D PO	PO	PO	PO	PO	PO	PSO	PSO
	1	$\frac{10}{2}$	$\frac{10}{3}$	4	5	6	7	8	9	10	11	12	1	2
CO1	2		-	-		-		-	-			: 	_	
CO2	2	2	1	1								1		
CO3	2		1	1								1		
CO4	2		2	1								1		
	I				1:Lc	w,2-N	Iedium	1,3-Hig	gh	L1	1			
					CO	URSE	CON	ΓENT						
Task-1														
Study of gener	al pro	cedure	for sp	ecimer	ı prepa	ration	and M	etallur	gical N	Microso	cope.			
Task -2														
Preparation an	d stud	y of th	e Micr	o Stru	cture of	f pure	metals	like Ir	on, Cu	1 and A	1.			
Task -3														
Preparation an	d stud	y of th	e Micr	ostruct	ture of	Mild s	steels.							
Task -4														
Preparation an	d stud	y of th	e Micr	ostruc	ture of	low ca	ırbon s	teel.						
Task -5														
Preparation an	d stud	y of th	e Micr	ostruc	ture of	high c	arbon	steels.						
TASK-6														
Study of micro	ostruct	ures of	f Cast I	ron.										
TASK-7														
Study of microstructures of Nonferrous alloys.														
TASK-8														
Study of micro	ostruct	ures of	f Heat-	treated	l steels									
TASK-9														

Metallographic study and analysis of Brass

# TASK-10

Metallographic study and analysis of Bronze.

# TASK-11

Hardenability of steel by Jominy End Quench Test.

# TASK-12

Find out the hardness of various treated and untreated steels.

# TASK-13

Study of crystal structure of BCC, FCC and HCP crystals.

# TASK -14

Demonstration of microstructure characteristic by Image Analyzer.

# VirtualLabs:

1<u>http://mrmsmtbs-iitk.vlabs.ac.in/</u> 2.<u>http://mrmsmtbs-iitk.vlabs.ac.in/home%20page.html</u>

#### Self-Study:

Contents to promote self-Learning

contents	Some no promote sen Dearning										
SNO	Торіс	CO	Reference								
1	Preparation and	CO1	https://www.youtube.com/watch								
	Study of Mild steel		<u>?v=YpCiPwZINqs</u>								
2	Study structure of	CO2	https://www.youtube.com/watch								
	BCC crystals.		<u>?v=_h-Xv9nsJLc</u>								
3	Metallographic	CO3	https://www.youtube.com/watch								
	Study and analysis of Brass.		<u>?v=IPjM4UGumT4</u>								
4	Hardenability of	CO4	https://www.youtube.com/watch								
	Steel by Jominy End Quench Test.		<u>?v=qjsZVivfzcg</u>								

#### **Text Book(s):**

- 1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017
- 2. A Text of Essential of Materials science and engineering/ DonaldR.Askeland/Thomson.2013
- 3. Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

#### **Reference Book(s):**

- 1. Science of Engineering Materials/Agarwal
- 2. Engineering materials and metallurgy/R. K.Rajput/S.Chand.
- 3. Engineering Materials and Ther Applications R. A Flinn and P K Trojan /JaicoBooks

NARAYANA ENGINEERING COLLEGE:NELLORE												
20ES1508		Principles (	Of Electrica	And Elect	ronics Engi	neering Lab	)	R2020				
Semester	Н	Hours / Week Total Credit Max Marks										
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
Ι	0	0	3	48	1.5	40	60	100				
Pre-requis	ite: Netwo	rk Analys	sis									
Course Ob	jectives:											
1. To	design elect	rical circu	its									
2. To	analyze a gi	iven netwo	rk by using	mesh & No	odal analysi	S						
3. To	measure thr	ee phase A	ctive and R	leactive pov	wer.							
4. To	understand	the locus d	iagrams.									
5. To	Conduct Ex	periment of	on semicond	luctor devic	ces.							
6. To	verify ampl	ification of	Transistor,	FET & M	OSFET.							
Course Ou	tcomes: Af	ter succes	sful comple	tion of the	course, th	e student v	vill be able	to:				
CO 1	Verify el	ectrical cir	cuits. (BL-2	2)								
CO 2	Experime	ntally dete	rmine self-i	nductance,	mutual ind	uctance an	d coefficier	nt of coupling				
	Practically	y. (BL-2)										
CO 3	Describe	construct	ion, work	ing and o	characteris	tics of di	odes, trar	nsistors and				
	operation	al amplifi	ers (BL-03	3)								
CO 4	Demonstr	ate how e	lectronic de	evices are	used for a	pplications	s such as	rectification,				
	switching	and ampli	fication (BL	01)		••						
	U	<b>^</b>										

CO-PO Mapping															
CO	CO PO													PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		2	2		2								2	2	
CO2		2	2	3									2	2	
CO3		2	2	2									3	2	
CO4		1	1	3									3	2	
	1: Low, 2-Medium, 3- High														

COURSE CONTENT	CO
Task 1 - Verification of Kirchhoff laws.	
Objectives:	CO 1
a) To Verify the KCL	
b) To Verify the KVL	
TASK-2 Determination of Self, Mutual Inductances and Coefficient of Coupling	
Objective:	
To determine the self and mutual inductances and coefficient of coupling for two inductive coils.	
Task-3 verification of RL ,RC& RLC series circuits	
Objectives: To Verify the Resistance, inductance & Capacitance effects in series Ac	CO 1
circuits	
TASK-4 Locus Diagrams of RL and RC Series Circuits	
Objective: To Plot the current locus diagrams for RL and RC circuits.	CO 2

TASK-5 Series Resonance	
Objective:	CO 2
To determine resonant frequency, band width and Q-factor for series RLC circuits	
TASK-6 Parallel Resonance	
Objective:	CO 2
To determine resonant frequency, band width and Q-factor for parallel RLC circuits	
	-
PART-B: Electronics Laboratory	
Task 7 - characteristics of Semi-conductor diode	
Objective: Objectives: Draw and study the characteristics of Semi-conductor diode	CO 3
Task 8-characteristics of Zener Diode	
Objectives: Draw and study the characteristics of Zener Diode	CO 3
Task 9-characteristics of Transistor in Common Emitter configuration	
<b>Objective: Objectives:</b> Draw and study the input and output characteristics of Transistor	CO 3
in Common Emitter configuration.	
Task 10-Characteristics of Transistor in Common Collector configuration	
<b>Objective:</b> Draw and study the input and output characteristics of Transistor in Common	CO 4
collector configuration.	
Task 11- Study of Rectifiers	
<b>Objectives:</b> Construct half wave and full wave rectifier circuits. Find ripple factor and	CO 4
plot their output waveforms with and without filters.	
Task 12-Characteristics of MOSFET	
Objective: Draw and study the Drain and Transfer characteristics of Transistor in	CO 4
Common Emitter configuration	

Additional Experiments:	
TASK-13 Simulation of DC Circuits	
Objective:	CO 2
To simulate a simple DC circuits using PSpice	
TASK-14 DC Transient Response	
Objective:	CO 2
To simulate a simple DC circuits using PSpice	
TASK-15 LC Tuned Oscillators	
Objective:	CO4
Conduct Experiment on LC-Tuned Oscillators Using PSPICE.	

TASK-15 Class A Amplifier						
Conduct Experiment on Class A amplifier using PSPICE						
<ul> <li>Virtual Labs:</li> <li>1. Speed Control of DC Motor By Varying The Armature And Field Resistances.</li> <li>2. Conduct OC and SC Test on Single Phase Transformer.</li> <li>3. Conduct Brake test on 3-phase induction motor.</li> </ul>						

4. PSPICE Virtual Lab: https://vlabs.iitkgp.ernet.in/be/#

#### Text Book(s):

1. Simulation of Power Electronics Circuit, M B Patil, V Ramanarayan and V T Ranganat, Alpha Science International Ltd., 2009.

2. Basic Electrical and Electronics Engineering, M.S.Sukhija, T.K.Nagsarkar, Oxford University

# **Reference Book(s):**

1. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw- Hill, 4th Edition, 2010.

2. WillamHayt.jr, Jack E.kemmerly, StevenM.Durbin, "Engineering Circuit analysis" Tata McGraw-Hill, 8th Edition2012

3 A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

4 Rudra Pratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.

 David A.Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2009.
 Salivahanan, Kumar, Vallavaraj, "Electronic Devices and Circuits", Tata Mc-Graw Hill, Second Edition.

#### Web Resources:

1. https://www.ee.iitkgp.ac.in/

2. http://www.vlab.co.in/lab_ready_for_use.php

3. http://vlab.amrita.edu/?sub=1&brch=75

4. https://www.electronicsforu.com/tag/on-semiconductor

5. https://www.electrical4u.com/difference-amplifier/

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EN1502		0	RAL COMN	UNICATIO	ON SKILLS LA	АВ		R2020			
Compation		Hours /	Week	Total	Credit		Max Mar	ks			
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
П	0	0	2	32	1	40	60	100			
			Р	re-requisit	e:Nil						
1. Und dev 2. Und plav 3. Imp 4. Und 5. To i toe 6. To o <b>Cou</b>	<ul> <li>Course Objectives:         <ol> <li>Understand the role of communication in personal &amp; professional success and developawareness of appropriate communicationstrategies.</li> <li>Understand and learn to distinguish informal speech from formal speech through role playsand can handle a concern or complaint, with empathy andunderstanding.</li> <li>Improves speaking ability in English both in terms of fluency and comprehensibility.</li> <li>Understand the essential points in preparing an oralpresentation</li> <li>To improve the mass communication and provide an opportunity to exercise their rights to express them effectively</li> <li>To equip students with knowledge and techniques to effectively tackle the interviewprocess</li> </ol> </li> <li>Course Outcomes: After successful completion of the course, the student will be able to:         <ol> <li>To develop knowledge, skills, and judgment around human communication that facilitates their split split and split split and split split and split split split and split spl</li></ol></li></ul>										
CO 2	Use lister profession telephone	ning skills nal & perso e etiquette.	to create nal relatio	more effe	ective, less I understan	confronta d techniqu	tional, mo es required	re productive d for excellent			
CO 3	De	evelop their	public spe	aking abilit	ies to speak	both form	ally and inf	ormally.			
CO 4	Learr	n the skills n	ecessary to	o deliver ef	tective pres	entation w	ith clarity a	ind impact.			
CO 5	Understa	and the nua	nces of Eng	glish langua in gro	age and skill up activities	s required	for effectiv	e participation			
CO 6	Learn to face different types of interviews with confidence and understand the procedure& preparation required for attending an interview.										

CO-PO Mapping														
		PSO												
0	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1									3		2		
CO2	1									2		3		
CO3	1									3		2		
CO4	1									3		3		
CO5	1									3		2		
CO6	1									2		3		
	1	1	1	1	1: Lo	w, 2-N	ledium	n, 3- Hi	gh	I	I	I		

COURSE CONTENT	СО				
Module - 1					
Ice - Breaking Activity – Introducing Oneself and Others – Greetings – Taking Leave - Introduction	CO1				
to Communication Skills – Verbal & Non Verbal Communication - Barriers to					
effective communication - Kinesics - Proxemics – Chronemics - Haptics- Paralanguage.					
Module - 2					
Situational Dialogues and Role play – Expressions in various Situations - Greetings – Apologies – Requests – Giving directions -Social and Professional etiquettes – TelephoneEtiquettes	CO2				
Module - 3					
Just a Minute (JAM) - Asking for Information and Giving Directions–Description (Oral):	CO3				
Pictures, Photographs, Products, and Process					
Module – 4					
Presentation Skills – Oral presentations (individual and group) through Seminars / PPTs - Fluency	CO4				
& accuracy in speech – Improving self- expression– Tonal variations – Listener oriented					
speaking - Developing persuasive speakingskills.					
Module - 5					
Debate : concepts, types, do's and don'ts - intensive practice- Group Discussion and Group	CO5				
Discussion : Dynamics of group discussion, intervention, summarizing,					
modulationofvoice, body language, relevance, fluency and					
organization of ideas and rubrics for evaluation.					
Module - 6					
Interview Skills: Concept and process, pre-interview planning, opening strategies, answering strategies, interview through Tele - Conference & video - conference and Mock Interviews.	CO6				

# **Reference Book(s):**

- Rizvi, Ashraf. M., EffectiveTechnicalCommunication, McGrawHill, NewDelhi. 2005
- Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi.2011.
- Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata McGraw-Hill2009
- CommunicationSkillsbyLeenaSen,PHILearningPvtLtd.,NewDelhi,2009

#### Web Resources:

- Grammar/Listening/Writing1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/Grammar/Vocabulary</u>
- English Language LearningOnline
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game<u>Reading</u>
- <u>https://www.usingenglish.com/comprehension/</u>
- <u>https://www.englishclub.com/reading/short-stories.htm</u>
- <u>https://www.english-online.at/Listening</u>
- <u>https://learningenglish.voanews.com/z/3613</u>
- http://www.englishmedialab.com/listening.htmlSpeaking
- <u>https://www.talkenglish.com/</u>
- BBC Learning English Pronunciationtips
- Merriam-Webster Perfect pronunciation Exercises <u>AllSkills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org</u>

# /Online Dictionaries

- Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

# NARAYANA ENGINEERING COLLEGE::NELLORE

**DEPARTMENT OF MECHANICAL ENGINEERING** 

S.No	BoS Subjects from The Department	Sem/Branch	Category			
	of ME					
1.	Engineering Mechanics	III Sem ME	ES			
2.	Thermodynamics	III Sem ME	ES			
3.	Manufacturing Processes	III Sem ME	PC			
4.	Fluid Mechanics & Hydraulic	III Sem ME	PC			
	Machines		FC FC			
5.	Computer Aided Drafting and	III Sem ME	FS			
	Modeling Lab		LO			
6.	Manufacturing Process Lab	III Sem ME	PC			
7.	Fluid Mechanics & Hydraulic	III Sem ME	PC			
	Machines Lab		re			
8.	Thermal Engineering	IV Sem ME	PC			
9.	Kinematics of Machinery	IV Sem ME	PC			
10.	Mechanics of Materials	IV Sem ME	PC			
11.	Metal Forming Processes	IV Sem ME	PC			
12.	IC Engines Lab	IV Sem ME	PC			
13.	Mechanics of Materials Lab	IV Sem ME	PC			
14.	Computer Aided Machine Drawing	IV Sem ME	PC			

# List of R20 III & IV Sem Subjects

			Ν	NARA [®]	YANA	ENG	INEE	RING	COL	LEGE	: NEI	LORF	C			
					EN	GINE	ERINO	G ME	CHA	NICS					R2	020
Seme	ster		Ηοι	urs / W	'eek		То	otalhrs		Credi	it		N M	/lax arks		
			L	Т		Р				С		CIE SEE		E	TOTAL	r
	III		2	1		0		48		3		40	60		100	
Pre-r	equisite	: Dif	ferenti	ation a	nd inte	egratio	n topic	es in m	athen	natics.						
Cour	se Obje	ective	es:													
	1.	Го lea	arn the	fundaı	nental	s of me	echani	cs con	cept o	f force a	and its	s types.				
	2.	Го lea	arn the	effect	of fric	tion or	ı equili	ibrium								
	3. 7	Γo de	velop l	knowle	edge ir	analy:	zing di	fferent	t type	s of trus	ses.					
	4. 7	Го ga	in prof	iciency	y in un	dersta	nding t	he con	cept	center of	of gra	vity &	mome	nt of i	nertia.	
	5.	Γo lea	ırn kin	ematic	s, kine	tics of	partic	le and i	rigid	oody, re	lated	princip	les.			
(	CO1	Con	ipute t	he resu	iltant o	of syste	em of f	orces i	n pla	ne and s	pace	acting of	on bodi	es. (B	L-3)	
	202	Solv	ve the r	nechar	ncs pr	oblems	assoc	1ated v	vith fi	riction f	orces.	(BL-3)	)			
	203	Dete	ermine	the su	pport-	reactio	ns and	analyz	ze the	interna	l force	es of the	e memt	pers of	t various	5
		truss	ses and	1 frame	s. (BL	2-4)					T 4)					
	204	Calc	culate t	ne loca	ation o	t centr		compo	osite a	reas. (B	L-4)					
CO DO Monning																
		,	PO	PO	DO								PO	PSO		
			1	$\frac{10}{2}$	3	4	5	6	10	8	9	10	10	12	130	13
	CO	)1	2	1	1		-			-		10			1	_
	CO	2	2	2	2										1	
	CO	3	2	2	2										-	
	CO	94	2	2	2										2	
	CO	5	2	2	2										1	
							1:Lo	ow,2-N	lediu	m,3-Hig	gh					
						C	OURS	E CO	NTE	NT						
		MO	DULI	E – 1			S	ystem	of Fo	rces		10	H			
Compo	osition a	nd rea	solutio	n of fo	orces, 1	oaralle	logram	law, r	orinci	ole of tr	ansmi	ssibilit	y, types	s of fo	rce syst	ems
- conci	irrent ai	nd co	ncurre	nt cop	lanar f	orces,	resulta	ant of c	coplai	har forc	e syst	ems co	uple, n	nomer	nt of a f	orce
Varign	on's the	orem	, conce	ept of f	ree bo	dy diag	grams,	conce	pt of	equilibr	ium o	f copla	nar for	ce sys	tems.	
	MC	)DUI	LE -2					Fricti	on			09	H			
Defini	tion of I	Frictio	on and	its app	olicatio	ons, ang	gle of f	riction	, ang	le of rep	ose, c	oeffici	ent of f	riction	n. Types	of
Friction	n, laws o	of sta	tic fric	tion, D	Descrip	tion ar	nd appl	licatior	ı of fi	riction o	n blo	cks on l	horizon	ıtal an	d incline	ed
planes.																
	M	ODUI	LE-3			A	nalysi	s of Tr	usses	5		09	H			
Introd	uction to	o plan	ne truss	ses, ana	alysis o	of plan	e truss	es by r	netho	d of Joi	nts, m	ethod of	of secti	ons &	tension	
coeffic	ient me	thod.														

MODULE-4	Centroid & Moment of	10H
	Inertia	

Definition of Centroid & Centre of Gravity, Axes of Symmetry, Location of Centroid of Rectangle, Triangle, Semicircle, Quadrant and sector of a circle by method of integration. Numerical problems on Centroid of Composite sections.

Concept of Moment of inertia, perpendicular axis theorem, parallel axis theorem, and moment of inertia of Rectangular, Circular, Semicircular, Quadrant of a circle Triangular sections by method of integration. Numerical Problems on moment of inertia of composite section.

MODULE-5	10 H								
Rectilinear and Curvilinear motion, Velocity, Acceleration, Motion of a projectile, Relative motion.									
Kinetics of rectilinear motion, Newto	on's laws of motion, D'Alembert's princip	ple, Work-energy method,							
Impulse-momentum equation, Kinet	ics of circular motion, Rotation.								
		Total hours:	48 h						

#### Text Book(s):

1. S S.Bhavikatti, "Engineering Mechanics", 4th edition, New Age International, 2008.

2. R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications, 2010

3. Irving Shames, GKM Rao, "Engineering Mechanics: Statics and Dynamics", 4thedition, Pearson, 2009.

#### **Reference Book(s):**

- 1. BasudebBhattacharya., "EngineeringMechanics", 2ndedition, OxfordUniversityPress (India), 2015.
- 2. K L Kumar, Veenu Kumar, "Engineering Mechanics", 4th edition, Tata McGrawHill,2010.
- 3. Engineering Mechanics, R.S.Khurmi, S.Chand, 2012.
- 4. Engineering Mechanics Statics and Dynamics by Ferdinand Singer, 2011

NARAYANA ENGINEERING COLLEGE:NELLORE										
THERMODYNAMICS										
Semester		Hours /	Week	Total	Credits		5			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	3	0	0	48	3	40	60	100		

**Pre-requisite :** Engineering physics, Mathematics

# **Course Objectives:**

- 1. To learn the fundamental concepts of thermodynamics and related definitions
- **2.** To understand the concept of law of conservation of energy for a process or cycle andto create awareness of principle of working of various thermodynamic systems to learntheir practical applications.
- 3. To describe the principle of entropy, availability, irreversibility and combustion thermodynamics.
- **4.** To study the behavior of pure substance, ideal and real gases during various thermodynamic processes and to study change in various properties.
- **5.** To Prepare students to apply principle of thermodynamics to solve numerical and designproblems of various thermodynamic processes and systems to provide useful solutions.

	<b>Course Outcomes</b> : At the end of the course, student will be able to:								
CO 1	Understand the concepts of system, control volume, thermodynamic properties, thermal equilibrium, work and heat. (BL-2)								
CO 2	Apply the laws of thermodynamics for different workstations.(BL-3)								
CO 3	Analyze the performance of steam power cycles .(BL-4)								
CO 4	Measure the properties of pure substances and gas mixtures.(BL-3)								
CO 5	Analyze air standard cycles applied in prime movers. (BL-4)								

СО		РО												PSO		
	PO 1	<b>PO</b> 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	Р О 11	PO 12	PSO 1	PSO 2		
CO1	1	1	-	-	-	-	-	-	-	-	-	1	2	-		
CO2	2	2	1	-	-	-		-	-	-	-	1	2	-		
CO3	2	2	1	1	1				-	-	-		1	-		
CO4	-	2	-	-	-	-	-	-	2	-	-	-	2	-		
CO5	2	2	1	1	1				-	-	-	2	1	2		
					1:	Low,	2-Med	lium, 3	- High							

#### COURSE CONTENT

FUNDAMENTAL CONCEPTS

09 Hours

**Fundamental Concepts and Definitions:** Microscopic and Macroscopic approaches, Concept of continuum and control volume, Systems of Thermodynamics, State, Property, Process, Homogeneous and Heterogeneous systems, Thermodynamic equilibrium, Quasi – static Process, Zeroth Law of Thermodynamics, Temperature Measurement. **Work And Heat Transfer**: Thermodynamic Definition of Work and Heat, Different forms of Work and Work transfer and Heat and Heat Transfer, Path Function and Point Function.

MODULE -2	FIRST LAW OF THERMODYNAMICS	10 Hours
MODULE -2	FIRST LAW OF THERMODYNAMICS	10 Hours

**First Law of Thermodynamics:** First law applied to a closed system undergoing a cyclic process and a change of state, Concept of Energy and its forms – Internal Energy and Enthalpy, Perpetual Motion Machine of First Kind (PMM1), First Law Limitations.

**Systems of flow :** First law applied to a control volume, Steady flow process and its mass and energy balance, Steady flow energy equation on unit mass and time basis, Application of SFEE for devices like boiler, turbine, compressor, heat exchanger, nozzle, diffuser and throttling device.

MODULE-3 SECOND LAW OF THERMODYNAMICS 10Hours

Second Law of Thermodynamics: Definition of a heat engine and energy reservoir, thermal efficiency of heat engine, Refrigerator and heat pump and their coefficient of performances, Kelvin-Planck and Clausius Statements of the Second Law and their equivalence, Carnot Cycle and Reversible Heat Engine, Carnot theorems and corollaries, Absolute Thermodynamic Temperature Scale, PMMI and PMM II, Reversible process, Irreversible process, Causes of Irreversibility,

**Entropy** : Concept of Entropy, Clausius theorem, Clausius inequality, Entropy changes in an irreversible and reversible process, Principle of increase of entropy with its application, Absolute entropy.

**PURE SUBSTANCE:** Behavior of pure substance (steam) explained through T-v, P-T, P-v, P-h & T-s diagrams Triple point and critical point, Quality or Dryness Fraction, Wetness Fraction, Steam Tables, Mollier Chart Measurement of dryness fraction using throttling and separating- throttling calorimeters and also from steam tables Steam processes; expressions for the change in internal energy, enthalpy, work, heat, entropy in various Processes.

MODULE - 5IDEAL GASES AND GAS POWER CYCLES10 HoursIdeal Gas and Real Gas:Ideal gas, relation among the specific heats, internal energy, enthalpy. Analysis of<br/>isochoric, isobaric, isothermal, isentropic, isenthalpic processes, representation of the above processes on P-v, T-s<br/>planes. Determination of work, heat, entropy and enthalpy changes during the above processes, problems<br/>Characteristic gas equations of a real gas, law of corresponding states, compressibility factor, problems.

#### MODELLING OF BASIC ENERGY CONVERSION CYCLES:

Air standard cycle assumptions, Overview of reciprocating engines, Air standard cycles for reciprocating engines – Otto, Diesel &dual, Derivation for efficiency and Mean effective pressure (MEP) and Problems.

	Total hours:	48 hours
Text <b>E</b>	Book(s):	
1.	P.K.Nag, Engineering Thermodynamics, TMH, New Delhi,2013	
2.	G.J.Vanwylen and R.E.Sonntag, Fundamentals of Classical Thermodynamics, Wiley Easte NewDelhi,2008.	rn,
Refere	ence Book(s):	
1.	R. K. Rajput (2010), A text book of Engineering Thermodynamics, Fourth Edition, Laxmi Publications, New Delhi, India.	
2.	Engineering thermodynamics by RK Rajput,5 TH edition, Laxmi Publications, New Delhi, In	ndia.
3.	Engineering thermodynamics, work and heat transfer by Gordon rogers 4 TH edition, person educationindia2002.	
4.	Yonus A Cengel and Michael A Boles, Thermodynamics: An Engineering Approach, McC 2002.	3rawHill,

**5.** Principles of engineering thermodynamics by morani 8THedition, SI version.

		NARAYA	NA ENGIN	JEERING	COLLEGE:	:NELLOR	E						
		MANUFACTURING PROCESSES											
Semester	Hours / Week Total Credits				Ma	x Marks							
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
III	3	60	100										
Pre-requisi	te:												
Knowledge i	n strength	of material	s										
Knowledge i	n engineer	ing materia	ıls										
Basic knowle	edge in ma	thematical	calculation	S									
Preliminary 1	Knowledg	e about var	ious Mecha	nical Man	ufacturing n	nethods							
Course Obje	ctives:	1.00	. 1 .	с <i>.</i> :	1 11	• 1							
1. To give an $2 \text{ T} \cdot 1$	exposure	to different	techniques	of casting	and moulds	s required		<b>T</b>					
2. To learn th	e working	g principle (	of different	special ca	sting proces	ses and gat	ing system 3	. I o give					
an understan	ding of we	elding meta	llurgy and	weldability	y and to intro	oduce vario	usmetal joini	ng					
techniques					1.1.		A C 1 1	- <b>f</b>					
4. 10 Classify	y the work	ing of diffe	rent types (	DI GAS WE	elding proces	sses and GA	AS welding a	elects					
5. TO study th	ne concept	is of sufface	e treatment	process ai		uning meth		ics andpowder					
metanurgy.													
Course	Outcomes	: After succ	essful com	pletion of	the course, t	he student	will be able t	o:					
				_									
CO 1	intro	duce the ba	sic concept	s of castin	g, pattern pr	eparation a	and gating sys	stem					
	[BL-2]												
CO 2	Dem	onstrate dif	ferent spec	ial casting	processes an	nd melting	systems[BL-	2]					
CO 3	Class	sify workin	g of variou	s welding	processes,wo	eld joint an	d their charac	cteristics[BL-2]					
CO 4	Appl	y the princi	ples of var	ious gas w	elding and c	utting proc	cesses[BL-3]	_ *					
CO 5	Outline the manufacturing methods of ceramics and powder metallurgy[BL-2]												

	-	, i	. <b>U-</b> P(	Jivia	ping									~ ~
CO		P	PSO											
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	<b>PO8</b>	PO9	PO1	P	PO1	PSO1	PSO ₂
										0	01	2		
											1			
CO1	2	1											1	
CO2	1	1	2										2	
CO3	1	1	2										2	
CO4	1	1	2		1							1	3	
CO5	1	1		1	2							1	1	2
	•	1:Lo	w,2-N	ledium	n,3-Hig	gh		1			1			
						(	COUR	SE CC	NTEN	JT				
10DULE – 1 CASTING PROCESSES								10	h					

**Casting Processes:** Introduction to casting process, process steps; Sand Casting – Sand Molds - Types of Molding Sands and Testing; pattern: types, materials and allowance; Cores: Types of cores, core prints, principles and design of gating system;

Solidification of casting: Concept, solidification of pure metal and alloy.

MODULE -2 SPECIAL CASTING PROCESSES

Special casting processes: Process Mechanics, characteristics, parameters and applications of Shellcasting, investment casting, die casting, centrifugal casting;

RISERS – Types, function and design, casting design considerations, Design of feeding systems i.e., sprue, runner, gate and riser, moulding flasks; casting defects and remedies

METHODS OF MELTING: Crucible melting and cupola operation, steel making processes

MODULE-5 WEIAL JOINING PROCESSES - WELDING 101
------------------------------------------------

**WELDING** : Classification of welding processes ;types of welds and welded joints and V-I characteristics, design of welded joints, ARC welding, Forge welding, resistance welding, Thermit welding and Plasma (Air and water ) welding submerged arc welding, Laser welding, applications, advantages and disadvantages of the above processes, other fabrication processes.

Heat affected zones in welding; Arc Welding defects: causes and remedies.

MODULE-4	GAS WELDING	10h

**Gas Welding**: – Flame Characteristics-Equipment, fluxes and filler rods-Ultrasonic Welding – Friction Welding-Resistance Spot Welding-Resistance Seam Welding – Stud Welding – PercussionWelding - Brazing:- Filler Metals, Methods - Soldering:- Techniques, Types of Solders and Fluxes ;TIG& MIG welding

**CUTTING OF METALS**: Oxy – Acetylene Gas cutting, water plasma. Cutting of ferrous, non-ferrous metals soldering and brazing and adhesive bonding : Types and their applications, gas welding defects–causes and remedies–destructive and nondestructive testing of welds

MODULE-5	SURFACE ENGINEERING &	9 h
	POWDERMETALLURGY	

**SURFACE ENGINEERING**: Surface treatment processes and their characteristics and applications. (a) Overlay coatings (b) Diffusion coatings (c) Thermal or mechanical modification of surfaces. **Ceramics**: Classification of ceramic materials, ceramic powder preparation; Processing of ceramic parts:Pressing, casting, sintering; Secondary processing of ceramics: Coatings, finishing.

**Powder Metallurgy:** Principle, manufacture of powders, steps involved.

Total hours	48 hours

Text Book(s):

1. Rao P.N.," Manufacturing Technology–Volume I", 5thedition, McGraw-Hill Education, 2018.

2. Kalpak Jains and SchmidS.R., "Manufacturing Engineering and Technology", 7th edition, Pearson, 2018

# Reference Book(s):

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Publications
- 2. Production Technology by R.K.Jainand S.C.Gupta, KhannaPublishers, 17 th qedition, 2012
- 3. Production Technology, K.L Narayana, I.K. International Pub, 3rdEdition, 2013
- 4. Manufacturing Process Vol. I, H.S.ShahPearson, 2013,
- 5. Welding and Welding Technology, Richard Little McGraw Hill Education, 2017

NARAYANA ENGINEERING COLLEGE:NELLORE											
	Fluid Mechanics and Hydraulic Machines R2020										
Semester	Hrs / Week		Total	Credits		Max Mar	`ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	3	0	0	48	3	40	60	100			

# **Pre-Requisite:** To have basic knowledge in Mechanics, Mathematics and Integral and Differential Calculus.

# **Course Objectives:**

1. To study the Properties of Fluids.

2. To acquire fundamental knowledge in flow through pipes.

3. To learn various concepts in impact of jet on vanes

4. To understand the various types of hydraulic turbines

5. To analyze the flow in Hydraulic Pumps.

Course Outcomes: After successful completion of the course, the student will be able to:													
CO 1	Apply the problems	Apply the concepts of fluid statics, fluid kinematics and fluid dynamics in solving the problems of fluid flows (BL-3)											
CO 2	Become cometer, flor	Become conversant with concepts of flow through pipes, pitot tube, venturi meter, orifice meter, flow nozzle and turbine meter and able to describe them.(BL-1)											
CO 3	Illustrate t vanes and	Illustrate the concepts of fluid jets on stationary and moving flat, inclined and curved vanes and also hydro power stations (BL-2)											
<b>CO 4</b>	Make use unit and s	of the v pecific	various quanti	s conce ties (B	epts of L-3)	water	turbine	es for c	calcula	ting th	e effici	encies	and
CO 5	Demonstr	ate the	knowl	edge o	f work	ing pri	nciple	s of ce	ntrifug	gal pun	nps (BI	L-2)	
						C	<b>O-PO</b>	Mapp	oing				
	CO		-				P	0					
		PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	РО
		1	2	3	4	5	6	7	8	9	10	11	12
	CO1	3	1	-	-	-	-	-	-	-	1	-	2
	CO2	2	2	1	-	-	1	-	-	-	-	-	1
	CO3	2	2	2	1	-	-	-	-	-	-	-	1
	CO4	1	2	2	2	-	-	-	-	-	-	-	2
CO5 1 2 2 2							-	2					
	1:Low,2-Medium,3-High												
				COUR	SE CO	ONTE	NT						
	MODU	LE – 1	PR	OPE	RTIES	5 OF I	FLUII	DS		1	l0 Hrs		

Definition of fluid, Dimensions and units, physical properties of fluids-density. specific weight, specific gravity, surface tension-vapor pressure and their influence on fluid motion-Newton's Law Of Viscosity,

Fluid Statics-Atmospheric, Gauge and Vacuum pressure–measurement of pressure–Piezometer, manometerssimple, U-tube manometers, U-tube differential manometers.

**Fluid Kinematics** : stream line, path line and streak lines and steam tube, classification of flows- steady & unsteady, uniform, non-uniform, laminar, turbulent, rotational and irrotational flows-equation of continuity for one dimensional flow.

	•	
MODULE -2	FLUID DYNAMICS	9 Hrs

**Fluid Dynamics**: surface and body forces – Euler's and Bernoulli's equations for flowing stream line, momentum equation and its application on force on pipe bend

**Flow Through Pipes**: Reynolds's Number, Darcy Weisbach equation–Minor losses in pipes–pipes in series and pipes in parallel. Measurement of flow: Pitot Tube, Venturi Meter - horizontal position only and Orifice Meter.

**Dimensional Analysis**- dimensional homogeneity- methods of dimensional analysis-Rayleigh's method-Buckingham theorem.

**Impact Of Jet : I**ntroduction to Hydrodynamic Thrust of jet on fixed and moving surfaces (flat and curved), series of flat vanes and series of radial curved vanes -velocity diagrams, work done and efficiency

	I	MOI	DUL	Æ-4		H	IYDR	AULI	C TUR	BIN	ES		10	Hrs		
~			-		-	4.5							4			_

Classification of turbines, Impulse and Reaction turbines, Pelton wheel, Francis turbine and Kaplan turbineworking proportions, work done, efficiencies( theory & derivations), hydraulic design-draft tube-theory- functions and efficiency.

MODULE-5	CENTRIFUGAL PUMPS	9 Hrs

Introduction, Classification -components and working of centrifugal pumps, - work done – manometric head, losses, efficiencies–specific speed–pumps in series and parallel–performance characteristic curves and NPSH.

Total Hrs: 48 Hrs

#### Text Book(s):

1. Fluid Mechanics and Hydraulic Machines by Modi &Seth, Standard book house

2. A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., New Delhi, 2019.

#### **Reference Book(s):**

- 1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.
- 2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.
- 3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.
- 4. Dr D S Kumar, "Fluid Mechanics and Fluid Power Engineering" S K Katariua&Sons,2014.

1.

	NARAYANA ENGINEERING COLLEGE: NELLORE										
	Computer Aided Drafting and Modeling Lab R2020										
Semester	E	Iours / Wee	k	Total	Credit	Max	Marks				
	L T P hrs C CIE SEE TOTAL										
III	III 0 0 3 48 1.5 40 60 100										

Pre-requisite: To have basic knowledge in Computers and Engineering Drawing.

# **Course Objectives:**

1. To study the basics of CAD software

2. To develop skills to create 2D models.

3. To develop skills to create 3D models.

4. To study the basics of obtaining 2D Multi view drawings from 3D models.

Course Or	Course Outcomes: After successful completion of the course, the student will be able to:							
Course Ot	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	<b>CO 1</b> Study basic of CAD software and study basic concept of product design (BL-1)							
CO 2	Use the software package for drafting and modelling and explain representation of curves							
	for real time applications. (BL-2)							
CO 3	Construct 2D models of Engineering Components (BL-3)							
CO 4	construct 3D models of Engineering Components (BL-3)							

		(	CO-PO	ЭМар	ping								
СО			]	PO									I
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	-
CO1													
CO2	2									2			
CO3	3		3		2					2		2	
CO4	3		3		2					2		2	
		1: Lo	w, 2-N	lediun	n, 3-Hi	gh							

#### **COURSE CONTENT**

Task -1 Introduction to AutoCAD commands

Study capabilities of software for Drafting and Modeling – Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.

#### Task -2

. Draw Title Block with necessary text and projection symbol

#### Task -3

Draw the methods of Dimensioning

#### TASK-4

Draw front view and top view of pentagon & hexagon by using 2D modeling

#### TASK-5

Draw front view and top view of simple solids like prism, pyramid, cylinder, cone by using 2D modeling

#### TASK-6

Draw front view, top view and side view of objects from the given pictorial views (eg. V-block,, stepped block, pulley, Simple stool,).

# TASK-7

Draw sectional views of prism, pyramid, , etc,

#### TASK-8

Draw isometric projection of simple objects. cylinder, cone and sphere

#### TASK-9

Creation of 3-D models of simple objects like journal bearing and spiral steps

# TASK-10

Draw a layout of Engineering workshop.

#### Text Book(s):

- 1. Mikell.P.Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", Prentice hall of India Pvt. Ltd.,NewDelhi.2008
- 2. Ibrahim Zeid, "CAD / CAM Theory and Practice 2E", Tata McGraw-Hill, NewDelhi, 2010.

#### **Reference Book(s):**

- 1. Chriss McMahon and Jimmie Browne, "CAD/CAM", Addision Wesley, New York, 2000.
- **2.** Tien-chienchang, Richard A wysk, Hsu-pin wang, "Computer-Aided Manufacturing", PearsonEdition,2009.
- 3. P. Radhakrishnan, S. Subramanyan, V. Raju "CAD/CAM/CIM", New Age International, 2015.
- **4.** M.M.M. Sarcar, K. Mallikarjuna Rao, K. Lalit Narayan "computer aided design and manufacturing", prentice hall of India,2008.

	NARAYANA ENGINEERING COLLEGE::NELLORE									
		Manufacturing process Lab R2020								
Semester	H	Iours / Wee	k	Total	Credit	Max	Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	0	0	3	48	1.5	40	60	100		

#### **Pre-requisite:**

Knowledge in strength of materials

Knowledge in engineering materials

#### **Course Objectives:**

1. To acquire practical knowledge on Metal Casting and Welding,

2. To Study and practice arc and gas welding technologies.

3. To Gain knowledge on the properties, testing and applications of Steel, Cast Iron and Brass

4. To acquire practical knowledge on Press Working and unconventional machining Processes.

5.To Make the students practice on machine tools so that they can identify, manipulate and control various process parameters during machining processes in machine tool shop.

Course Ou	tcomes: After successful completion of the course, the student will be able to:
CO 1	understand the importance of safety in metal casting technology[BL-2]
CO 2	Apply Hands on experience on welding machine to perform welding and cutting
	operations[BL-3]
CO 3	Demonstrate Press Working operations on jobs[BL-2]
CO 4	select the proper tools to work on a machine for the type of part required[BL-4]
CO 5	Fabricate different types of components using various manufacturing techniques. [BL-3

		(	CO-PO	) Map	oping								
СО				PO									]
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	1	1										1	
CO2	1	1										1	
CO3												1	
CO4	1	1										1	
CO5	1	1										1	
		1: Lo	w, 2-N	/lediun	n, 3-Hi	gh							

# COURSE CONTENT

# Task 1

Pattern Design and making on lathe machine

#### Task 2

Sand Properties Testing – Exercise for Strength and Permeability

#### Task -3

Gating Design and pouring time and solidification time calculations

# TASK -4

Molding, Melting and Casting for ferrous/ non ferrous materials

# TASK -5

Arc Welding: Lap & Butt Joint of M.S. plates -5mm

#### TASK-6

Brazing on copper pipes- 6mm pipe

# TASK -7

Spot Welding on M.S PLATE- 2mm size

#### TASK -8

Tig Welding : Lap & Butt Joint of M.S. plates -5mm

# TASK -9

Hydraulic Press: Deep drawing Press Tool: Blanking and Piercing operation with Simple dies

### TASK -10

Additive manufacturing-3D printing

# ADDITIONAL EXPERIMENTS

# TASK-11

Design the mould for making chalk pieces

#### TASK-12

Design the small components by using 3D Printing

#### Text Book(s):

- 1. .W. A. J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers.
- 2 Hajra Choudary, Elements of workshop technology, Vol I & II, Media Publishers

#### **Reference Book(s):**

1. .Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press,2008.

2.	Poul DeGarmo,	J.T.Blac	ck,R.A.Kosher,	
	Materials	and	Processes	in
	Manufacturing, Prentice Hall of Ind	ia Pvt.Ltd.,	1997.	

HMT, Production Technology, Tata McGraw Hill.

	NARAYANA ENGINEERING COLLEGE:NELLORE										
	Fluid Mechanics and Hydraulic Machines Lab R2020										
Semester	Но	urs / Week		Total	Credits	Ν	lax Marl	ks			
	L T P hrs C CIE SEE										
III	0 0 3 48 1.5 40 60 100										

**Pre-requisite:** To have basic knowledge in Mechanics, Mathematics and Integral and Differential Calculus.

#### **Course Objectives:**

1. To study the frictional losses of fluid flow in pipes of different diameters.

2. To acquire fundamental knowledge of Bernoulli's principle.

3.To analyze the flow in Hydraulic Machines such as Turbines and pumps

<b>Course Outcom</b>	es: After successful completion of the course, the student will be able to:
CO 1	Familiar with Calibration of discharge measuring devices such as Venturi meter and
	Orifice meter.(BL-3)
CO 2	Familiarize with measuring minor loss (sudden contraction) and major loss (Frictional
	factor) of a given pipe.(BL-3)
CO 3	Apply the Bernoulli's Theorem (BL-3)
<b>CO 4</b>	Gain practical experience in handling various hydraulic machines (BL-3)

#### **COURSE CONTENT**

Task 1 – Calibration of Venturi Meter

Calibrate the coefficient of Discharge of a Venturi Meter.

#### Task -2 Calibration of Orifice Meter

Calibrate the coefficient of Discharge of an Orifice Meter.

# TASK-3 External Mouth Piece

Calibrate the coefficient of Discharge of external mouth piece.

#### TASK-4 Rectangular Notch

Calibrate the coefficient of Discharge of Rectangular Notch.

# TASK-5 Minor Losses

Find the loss of head due to sudden contraction.

#### TASK-6 Major Losses

Find the friction factor of pipes having different diameters and same material.

TASK-7 Verification of Bernoulli's Theorem.

Prove that the total energy remains constant by using Bernoulli's tube with different cross section.

TASK -8 Impact of jet on vanes

Measure the co efficient of impact of jet on flat and curved vanes.

TASK-9 Pelton wheel turbine

Conduct performance test on Pelton Wheel and find it's efficiency.

#### TASK-10 Single stage centrifugal pump.

Calculate the efficiency of a single stage centrifugal pump with constant speed.

# ADDITIONAL EXPERIMENTS

TASK-11 Multi stage centrifugal pump.

Calculate the efficiency of a Multi stage centrifugal pump with constant speed.

TASK-12 Reciprocating pump.

Calculate the efficiency of a Reciprocating pump with constant speed.

VirtualLabs:

1<u>http://eerc03-iiith.vlabs.ac.in/</u>

2.http://fmc-nitk.vlabs.ac.in/fluid-machinery/

# Text Book(s):

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house

2.A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., New Delhi.

#### **Reference Book(s):**

1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.

		NAR	AYANA	ENGINE	ERING CO	OLLEG	E:NELLORE				
				THERN	AAL ENG	INEER	ING	R2020			
Semester		Hours /	Week	Total	Credits		Max	Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
IV	3	0	0	48	3	40	60	100			
Pre-rec	<b>Pre-requisite:</b> Basic knowledge of engineering thermodynamics										
Course	<ol> <li>Torcom</li> <li>Torcom</li></ol>	etives: make stud ibustion e discuss ab describe t examine th understam	lents fam engines. pout the v he combu ne IC engi d the diff	iliar with t arious wor ustion mec nes perform erent types	he design a king syste hanisms in nance by va s of Compr	nd opera ms in IC IC engi rious tes essors.	ating characteris engines. nes. ting procedures	stics of modern internal			
Course	Outco	mes: At	the end o	of the cours	se, student	will be a	able to:				
CO 1	Under	stand the	working	g principle	of IC en	gine.(BL	2)				
CO 2	Expla	in about	various v	vorking sy	stems in I	C engine	s.(BL-2)				
CO 3	<b>CO 3</b> Describe the combustion processes of engines and identify the combustionchamber – requirements.(BL-2)										
CO 4	CO 4 Evaluate the performance of IC engine.(BL-4)										
CO 5	Summ	narize abo	out the ty	pes and wo	orking prin	ciples of	compressors.(H	3L-2)			

						(	CO-P	O Ma	pping	3				
CO							PO						I	PSO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	2	1											1	
CO2	3												2	
CO3	2	1	1										1	
CO4	2	1	1										1	
CO5	2	1		1									1	
						1: Lo	w, 2-1	Mediu	m, 3-	High				

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO IC ENGINES	09 Hours
IC ENGINES: Classificat	on, Various parts and their uses, Materials of p	arts, Working
principles of two stroke and	four stroke engines and SI and CI engines, Valve and Po	ort Timing Diagrams,
Scavenging of IC Engines.		
MODULE -2	VARIOUS SYSTEMS OF IC ENGINES	10 Hours
FUEL SUPPLY SYSTEM Electrical, Air cleaners, defects. COOLING SYSTEM (IN of water cooling – Thermo Pressure sealed cooling, A LUBRICATION SYSTEM Oil pumps – Gear pump an IGNITION SYSTEM (I Magneto Ignition and Elec	<ul> <li>In SI ENGINES): Line diagram of fuel supply, Fue Fuel filters, Simple Carburettor – its working princip</li> <li>IN SI ENGINES): Methods – Air cooling, water cooling syphon system and Pump Circulation system, Radiator and the freeze solutions.</li> <li>IN (IN SI ENGINES): Dry sump and Wet sump system and Plunger pump, Oil filters – Bypass system and Full flow SI ENGINES): Requirements of ignition system, "tronic Ignition, Working principles of all the ignition system."</li> </ul>	I pumps – Mechanical and ole and types, Carburettor and liquid cooling, Types and Thermostat. ms. Crankcase ventilation, ow system. Types – Battery Ignition, stems, Spark Advance and

Retard Mechanisms.		
MODULE -3	COMBUSTION IN IC ENGINES	10 Hours
COMBUSTION IN SI I	ENGINES: Combustion in SI Engines Normal C	ombustion and abnormal
combustion, Importance of	flame speed and effect of engine variables, Type of A	bnormal combustion, pre-
ignition and knocking (expl	anation of) Fuel requirements and fuel rating, anti-kn	ock additives, combustion
chamber – requirements, typ	es.	
COMBUSTION IN CI EN	<b>GINES:</b> Four stages of combustion, Delay period and	d its importance, Effect of
engine variables, Diesel Kno	bck, Need for air movement, open and divided combust	tion chambers and nozzles
used – fuel requirements and	truel rating.	00.11
MODULE-4	TESTING AND PERFORMANCE OF IC ENGINES	09 Hours
TESTING AND PERFO	<b>RMANCE OF IC ENGINES</b> : Parameters of perf	formance, measurement of
cylinder pressure, fuel con	sumption, air intake, exhaust gas composition, Brak	e power, Determination of
frictional losses and indicate	ed power, Performance test, Heat balance sheet.	
MODULE-5	COMPRESSORS	10 Hours
<b>RECIPROCATING</b> CO	MPRESSORS: Classification of compressors, P	rinciple of operation o
reciprocating compressors,	work required, Isothermal efficiency volumetric efficie	ncy and effect of clearance
multistage compression, und	er cooling, saving of work, minimum work condition for	r multi-stagecompression.
CENTRIFUGAL COMPR	<b>ESSORS</b> : Mechanical details, principle of operation,	velocity and pressure
variation, impeller blade sha	pe-losses, slip factor, power input factor, pressure coel	ficient and adiabatic
coefficient, velocity diagram	ns, power required.	
	Total hours:	48 Hours

# Text Book(s):

- 1. R.S. Khurmi and J.K. Gupta, A Textbook of Thermal Engineering, (2011), 3rd Edition, S. Chand & Company Ltd., New Delhi
- 2. R. K. Rajput (2011), Thermal Engineering, 18th edition, Lakshmi Publications, New Delhi, India.
- 3. Dr. Kirpal Singh, Automobile Engineering (Volume II), 6th Edition, Standard Publisher, New Delhi.
- 4. V. Ganesan (2011), I.C. Engines, 3rd edition, Tata McGraw-Hill, New Delhi, India.

# **Reference Book(s):**

1. Mathur, Sharma (2008), IC Engines, 3rd edition, Dhanpat Rai & Sons, New Delhi, India.

2. B.JohnHeywood (2011), internalcombustionenginefundamentals, 2ndedition, TataMcGraw-Hill, NewDelhi.

**3.** Pulkrabek (2008), Engineering fundamentals of IC Engines, 2nd edition, Pearson Education.

		Ν	ARAY	YANA	ENGI	NEER	RING	COLL	EGE:	NELL	ORE			
				K	INEN	IATIC	CS OF	MACI	HINE	RY		R20	20	
Semester		Hours /	Week	]	Fotal	Cre	dits		-	Max	Marks			
	L	Т	Р		hrs	C		CIE		SEE TOTAL				
IV	3	0	0		48	3		40		60		100		
Pre-requis	ite: Basic	s in Engi	ineerin	ıg Ma	thema	itics, I	hysic	s & Er	iginee	ring I	Mecha	nics		
Course Ob 1. 2. 3. 4.	jectives: To under machine: To learn To analy machine: To gain	rstand the s. h the princ yse a mech proficienc	basic p iple of nanism v in un	rincip steerir for dis dersta	les of k ng mec splacer nding t	cinema hanisn nent, v he teri	tics ar ns and velocity minolo	nd the re its type y and a gy of g	elated es. ccelera	termin ation o	nology of links	of in a		
5. Course	To acqui e Outcom	ire knowle	edge in	cam p ful co	rofile c	lrawin on of t	g for v he cou	rse, the	follow stude	ers. nt will	be abl	e to:		
CO 1	Ider chai	ntify differ ins.(BL-3)	ent typ	bes of t	mechai	nisms a	and inv	versions	s of di	fferent	kinem	atic		
CO 2	CO 2       Identify and enumerate different mechanisms with basic understanding of motion andmachine. (BL-3)													
CO 3	<u>Dra</u>	<u>w</u> velocity	y and ac	ccelera	ation di	agram	s for d	ifferen	t mecł	nanism	s. (BL	-4)		
<b>CO 4</b>	Ap	ply the kn tact for m	owledg eshing	ge of g gears.	ears to (BL-3)	Calcu )	late pit	ch, mo	dule,	numbe	r of tee	eth, pa	th of	
CO 5	Dra diff	w displace erenttypes	ement of mo	liagrai tions a	ms and and var	cam p ious co	rofile onfigu	diagran rations	n for f of fol	ollowe lowers	ers exec . (BL-:	cuting 5)		
Г						C	:0-PO	Mapp	ing					
	СО						Р	0						
		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	
F	CO1	2	2	2	-	1	-	-					1	
┢	CO2	1	1	1		1							1	
┣	CO3	3	2	2		_							_	
F	CO4	1	1	1		1							1	 I
	CO5	1	1	1		1							1	
						1.1.			2 11:-1					
L						1:LO	w,z-IVI	eaium,	3-Higi	1				_
				CO	URSE	CON	<b>FENT</b>							
MOL	$\overline{\text{OULE}} - 1$			Iı	ntrodu	ction					10	Hrs		
Definitions of	of link o	r element	t, kine	matic	pairs,	degre	es of	freedo	m, G	rubler'	's crite	erion (	witho	11

Definitions of link or element, kinematic pairs, degrees of freedom, Grubler's criterion (without derivation), kinematic chain, mechanism, structure, mobility of mechanism, inversion, machine, kinematic chains and inversions. Inversions of four bar chain, single slider crank chain and double slider crank chain, Quick return motion mechanisms – drag link mechanism.

MODULE -2	Mechanisms with LowerPairs	9 Hrs

straight line motion mechanisms – Peaucellier'smechanism and Robert's mechanism, intermittent motion mechanisms – Geneva mechanism and ratchetand pawl mechanism, pantograph. Steering Mechanism: Condition for perfect steering, Steering gear mechanisms, Davis and Ackermann–Hooke's Joint.

MODULE-3	Velocity and Acceleration of Mechanisms	10 Hrs

Determination of velocity and acceleration of a point/link in simple mechanisms by relative velocity method (graphical) – Coriolis component of acceleration. Instantaneous centre – Centrodes – Kennedy's theorem – To determine linear velocity and angular velocity of links of simple mechanisms by instantaneous center method.

Klein's Construction for velocity and acceleration of slider crank mechanism.

MODULE-4	Gears & Gear Trains	10 Hrs	

Classification of Gears – Gear terminology –Law of gearing –Velocity of sliding – Length of path o contact, Arc of contact – Contact ratio – Interference in Involute gears, Methods of avoiding interference – Minimum number of teeth to avoid interference on pinion meshing with gear and on pinion meshing with rack. Characteristics of involutes action, Comparison of Involute and Cycloidal teeth profiles.

Numerical problems.

Velocity ratio & Train value, Types of gear trains– Simple, Compound, Reverted & Epicyclic gear trains. Algebraic/Tabular method of finding Train value of Epicyclic gear trains, Bevel gear Differential of an automobile

MODULE-5	CAMS	9 Hrs

Types of cams, types of followers, displacement, velocity and acceleration time curves for cam profiles, disc cam with reciprocating follower having knife-edge, roller and flat faced follower, disc cam with oscillating roller follower. Follower motions including, SHM, uniform velocity, uniform acceleration and retardation and Cycloidal motion

Total hours: 48 hours

Text Book(s):

1. Thomas Bevan, Theory of Machines, CBS Publishers, 2009.

2. S.S. Rattan, Theory of Machines, Tata McGraw Hill Publishers, 3rd Edition, 2009.

3. Kinematics & Theory of Machines, Sadhu Singh, Pearson

#### **Reference Book(s):**

 J.E.Shigley, Theory of Machines, Tata McGraw Hill Publishers, New Delhi, 3rd Edition, 2005.
 C.S. Sharma and Kamlesh Purohit, Theory of Mechanisms and Machines, PHI Learning Pvt. Limited,2006

3. Amitabh Ghosh and A.K. Mallik, Theory of Machines, East West Publications, 3rd Edition, 2009.

	NARAYANA ENGINEERING COLLEGE:NELLORE									
		М	ECHANIC	CS OF MA	TERIALS			R2020		
		Hours /	x Marks							
Semester	L	Т	Р	hrs	L	Т	Р			
IV	2	1	0	48	3	40	60	100		

Pre-requisite: Course on Engineering Mechanics.

# **Course Objectives:**

1. To learn the concepts of stress, strain and its relation.

2. To acquire knowledge in bending moment diagrams of beams .

3. To calculate slope and deflection for various types of beams.

4. To Analyze the shear stresses in beams of different cross sections,

5. To determine the deflection in helical springs.

**Course Outcomes**: After successful completion of the course, the student will be able to:

CO 1	Explain the fundamentals of Stress and Elastic Constants.(BL-2)
CO 2	Illustrate shear force and bending moment diagrams.(BL-2)
CO 3	Explain the methods for calculating the stress in the beams with different sections.(BL-2)
CO 4	Find the shear strength of solid and hallow shafts.(BL-1)
CO 5	Classify different stresses and strains for the thin and thick cylinders (BL-2)

							CO-F	POMa	pping					
	СО							РО						Р
		PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1
	CO1	3	2	2			2						2	
	CO2	3	3	2			2				3		2	
	CO3	2	1	2			2				3		2	
	CO4	3	2	2			2				3		2	
	CO5	3	2	2			2				3		2	
						1:	Low,2-	Mediu	ım,3-H	ligh				
				CO	URSE	E CON	TENT	۲				- <u>r</u>		
MODULE – 1 SIMPLE STRESSES AND STRAINS 08 hours														
safety, La section, C	teral strain, Composite b	Poisson ars, Ten	n's rati	o, Volu ire stre	umetri sses, S	c strain Strain e	n, relationergy.	ion bet	ween	three e	lastic m	odule,	Bars of V	arying
MOD	OULE -2	S	SHEA]	R FOF	RCE A	ND B	ENDI	NG M	OME	NT			10	hours
Concept	t of shear fo	orce and	bendi	ng moi	ment, S	S.F and	1 B.M.	diagra	ams fo	r canti	lever, S	imply s	supported	, Over
hanging	beams su	bjected	to Po	int lo	ads, U	Jniforr	nly di	stribut	ed loa	ads, U	niform	y vary	ing load	ls and
combina	tionof these	loads, l	Point o	f contr	a flexu	ıre.								
MOD	ULE-3		B	ENDI	NG ST	RESS	AND	SHEA	R ST	RESS			10	hours
Theory of modulus	of simple be	nding, I	Bendin	g equa	tion, E	Determi	ination	of flex	xural s	tresses	for sim	ple cas	es, Sectio	on
Shear str Triangul	ess formula ar, I, T sect	a, Shear ions	stress	distrit	oution	across	variou	ıs bear	ns & s	ections	s - Rect	angula	r, Circula	ır,

	MODULE-4	TORSION AND DEFLECTION OF BEAMS	10 hours
--	----------	---------------------------------	----------

Theory of pure torsion, Torsion Equation, transmission of power in solid and hollow circular shafts, comparison o strengths of solid and hollow shafts, shafts in series and parallel, combined bending and torsion.

Relationship between curvature, slope and deflection, Slope and deflection of cantilever and simply supported beams by Double Integration method and Macaulay's method.

MODULE-5	PRESSURE VESSELS AND COMPLEX STRESSES	10 hours

Thin seamless cylindrical shells, Derivation of formula for longitudinal and circumferential stresses, Volumetric strain, Thin spherical shells, Thick cylinders under internal and external pressure. Complex Stresses - Stresses on an inclined plane under different uniaxial and biaxial stress conditions – Principal planes and principal stresses - Mohr's circle

Total hours:	48 hours
--------------	----------

#### Text Book(s):

1. F.P. Beer, E.R. Johnston, Jr&John.T. DeWolf, "Mechanics of Materials", 7th edition, Tata McGraw-Hill,2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition, 2012.

4. Mechanics of Materials, Andrews Pytel, J aan Kiusallaas & M.M.M.Sarcar (Second Edition), Cengage Learning Publishers.

#### **Reference Book(s):**

1. Timoshenko, "Strength of Materials Part-I&II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria &Sons, 2ndEdition, 2011.

NARAYANA ENGINEERING COLLEGE:NELLORE										
	METAL FORMING PROCESSES							R2020		
Semester		Hours / V	Veek	Total	Credits	Max				
	hrs Marks									
	L	Т	Р		C	CIE	SEE	TOTAL		
IV	3	0	0	48	3	40	60	100		

Γ

Pre-requi	site:					
Knowledge	e of strength of materials is essential					
Basics con	cepts of mechanical components and manufacturing processKnowledge in					
engineering	g materials					
Basic knov	ledge in mathematical calculations					
Course O	bjectives:					
The objecti	ve of this course is to					
1. Introduc	e the concepts of one, two and three dimensional stress analysis, theory of plasticity, strain					
hardening,	hot and cold working process.					
2.Create av	vareness among the students on various types of rolling mills, forgings.					
3Create a	wareness among the students on extrusions, wire drawing processes.					
4. Underst	and the concepts of sheet metal operations.					
5. Understa	and the concepts on plastic manufacturing processes and rapid manufacturing process and its					
application	S.					
Course Ou	comes: After successful completion of the course, the student will be able to:					
CO 1	Understand the basic concept on one, two and three dimensional stress analysis, theory of					
	plasticity, strain hardening, hot and cold working process [BL-2]					
CO 2	Define different rolling and forging processes and their defects [BL-1]					
CO 3	Familiarize the fundamentals of extrusion process and their industrial applications[BL-2]					
CO 4	Identify various press working processes, their advantages and disadvantages.					
	[BL-3]					

CO-PO Mapping														
СО		PO									PSO			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2		1							1	2	2
CO2	1	1	1		1							1	2	1
CO3	3	2	2										2	1
CO4	1	1	1		1							1	2	1
CO5	1	1	1		1							1	2	2
	1:Low,2-Medium,3-High													

COURSE CONTENT								
MODULE – 1	10 h							
Stress, strain, Two dimensional stress analysis and three dimensional stress analysis, relation between engineering stress and true stress, relation between engineering strain and true strain ,yield criteria, yield locus, theory of plasticity, Hot working, cold working, strain hardening, recovery, recrystallisation and grainGrowth								
MODULE -2	ROLLING & FORGING	9h						
Introduction to bulk and sheet metal forming, Economics of bulk forming ROLLING : principles and theory of rolling, Process description of Rolling. Forces in rolling and power requirements, applications and, limitations, defects in rolled products – Numerical problems on Rolling. FORGING PROCESSES: Principles of forging – Process description of Forging -Types Forging – Smith forging, Drop Forging – Roll forging –: Rotary forging – forging defects, Forces in forging of strip,								
MODULE 3	EVERYTRUSION PROCESSES AND WIDE DEPAWING	10b						
MODULE-5	EXTRUSION PROCESSES AND WIRE DERAWING							
Forward extrusion and backward extrusion – Impact extrusion Hydrostatic extrusion, forces in extrusion of cylindrical and non-cylindrical components – characteristics and defects in extruded parts. WIRE DRAWING: Process Mechanics and its characteristics, determination of degree of drawing, drawingforce power and number of stages-defects in products.								
MODULE-4	SHEET METAL WORKING	9h						
Sheet Metal Working – Economical Considerations - Stamping, forming and other cold working processes: Blanking and piercing – Bending and forming – Drawing and its types – Cup drawing and Tube drawing – coining – Hot and cold spinning. Force and power requirement in sheet metal operations, defects in sheet metal products								
MODULE-5	10h							
Processing of plastics, injection and blow moulding, calendaring, thermos forming, compression moulding, transfer moulding, joining of plastics. Rapid manufacturing: - Introduction – concepts of rapid manufacturing, information flow forrapid prototyping, classification of rapid prototyping process, sterer holography fused deposition modeling, selective laser sintering								
	Total hour	s: 48 hours						
Text Book(s):

- 1. Manufacturing Technology, Schmid and kalpak Jain, Pearson Education, 2016
- 2. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 3. Manufacturing technology Vol I by P.N. Rao, Tata McGraw Hill, 4th edition, 2013

# **Reference Book(s):**

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Pub
- 2. Rapid Prototyping Principles and Applications, Rafiq Noorani, WielyPub

		N	ARA	YANA	ENG	INEEF	RING	COLI	LEGE:	NELI	ORE				
					•	IC EN	IGINE	S LA	B					R2	020
Semest	er		Hou	rs / W	eek		То	otal	Credit	s			Max		
		T	,	г		D	h	rs	C		CIE		Marks	тс	
IV			_	1		P 2	10		15		40	, r		10	
1 V		0		0		3	40		1.3		40		00		)
Pre-requ	uisite: BAS	ICS IN	THE	RMO	DYNA	AMIC	S	I							
Course	Objectives:														
1.	To enable th	e studer	nts und	lerstan	d the p	rincipl	es, wo	rking	and per	forma	nce of l	C eng	ines.		
2.	To introduce	studen	ts to th	e worl	king of	comp	ressors	, stear	n nozzl	es					
3. 7	To understan	d princi	ple of	variou	s refrig	geratio	n and a	air-cor	nditioni	ng sys	stems.				
<b>4.</b> 7	To teach stu	dents th	e princ	iples o	of wast	e heat	recove	ery and	1 therm	al stor	age sys	tems.			
Course (	Jutcomes: A	After such	ccessfi	il com	pletion	of the	course	e, the s	student	will b	e able t	0:			
<u>C01</u>	Candy	at a a m at			d	<b>h</b> 1a ama			C an air						
	Condu	ct const	ant sp	eed an	a varia	ble spe	eed tes	ts on I	C engir	ies an	d interp	ret the	eir		
<u> </u>	Dotorn	nance.(	volvo	timino	diagre	mof	SI on ai	nale	I ongir	DO (PI	3)				
C02	Estima	inte ener	valve	ributio	$\frac{1}{2}$ unagra	anduct	ing he	at hala	nce tes	t on $I$	2-3)	er(BI	-5)		
	Apply	the con	cent of	f Mors	e test c	on SI e	ngine (	multi	cvlinde	r)		cs(DL	-3)		
CO4	Experi	ment or	n IC en	oine la	ad var	iations	with	Air fu	el ratio	(BL-	3)				
					Jud vul	<u>(</u>	:0-PC	) Mar	ning		5)				
	СО	) PO												PSO	
		PO	РО	PO	PO	PO	РО	РО	PO	РО	PO	Р	РО	PSO	PSC
		1	2	3	4	5	6	7	8	9	10	0	12	1	2
												11			
	CO1	2	3	1									1	1	1
	CO2	2	1	1									1		1
	CO3	1	2	1									1		2
	CO4	1	1	1						3	2		2	1	1
						1:Lo	w,2-M	lediun	n,3-Hig	h					
					CC	OURSE	E CON	TEN	Г						
				J	Fask 1										
Performan	ice test on S	park Igr	ition e	engine	and Co	ompres	ssion Ig	gnitior	using	the alt	ernate				
fuels.					<b>T</b> -	-1- 2									
					1 a	SK-2									
Valve Tim	ing Diagran	n of an 4	strok	e diese	el engin	ne.									
					Task-	3									
Port Timir	ng Diagram	of an 2_	Stroke	Petrol	engina	<b>_</b>									
		51 all ∠-)	JUOKC	1 01101	TASK										
					11101										
Performan	ice Test on a	4-Stro	ke Die	sel En	gines.										
					TASK	<b>X-5</b>									
Perfor	mance Test	on 2-St	roke P	etrol e	ngine.										
		- 20			0										

TASK-6
Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine.
TASK-7
Retardation and motoring test on 4- stroke engine.
TASK-8
Heat Balance of an I.C. Engine.
TASK-9
/Fuel Ratio and Volumetric Efficiency of an I.C. Engines.
TASK-10
Performance Test on Variable Compression Ratio Engines for CI Engines.
Additional Experiments
TASK -11
Performance Test on Reciprocating Air – Compressor Unit.
TASK -12
Study of Boilers.
Text Book(s):
1. Vasandani V.P. and Kumar, D.S., Treatise on Heat Engineering, Chand & Co Publishers, New
Delhi,2011.
2. Ganesan, V., Gas Turbines 3rd Edition, Tata McGraw Hill Book Company, New Delhi, 2010.
3. Internal Combustion Engines / V. Ganesan- TMH, 4thEdition,2012
4. Thermal Engineering / Rajput / Lakshmi Publications, 9thEdition,2013
Reference Book(s):
1.I.C. Engines fundamentals, Heywood, McGraw-Hill, 1st Edition, 2011
2. IC Engines – Mathur & Sharma – DhanpathRai&Sons,,2010
3. Engineering fundamentals of IC Engines – Pulkrabek, Pearson, PHI, 2ndEdition, 2009
4. Thermal Engineering, Rudra moorthy – TMH, 10thEdition,2010

	ľ	NARAYAN	A ENGIN	EERING (	COLLEGE	:NELLOF	RE							
	Mechanics of Materials Lab R2020													
Semester		Hours /	Week	Total	Credit		Max Mar	rks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
IV	0	0	3	48	1.5	40	60	100						
Pre-requisit	e: Should p	ossess basi	c knowledg	e in Engine	ering draw	ing, Standa	rds, Dimen	sioning and						
preparation of	of neat drav	vings and to	understand	l symbols u	sed in engi	neering dra	wings.							
Course Obj	ectives:			<b>a</b> 1 4		~	15							
	. To conduc	ct uni-axial	tension test	on Steel, A	luminium,	Copper an	d Brass.							
<ol> <li>To perform compression test on spring and wood.</li> <li>To determine elastic constants of materials using flexural and torsion tests.</li> </ol>														
<ul> <li>5. Fo determine elastic constants of materials using flexural and torsion tests.</li> <li>4. To find hardness of given metals</li> </ul>														
4. To find hardness of given metals. 5 To acquire knowledge on mechanical properties of materials such as various Elastic														
5. N	5.To acquire knowledge on mechanical properties of materials such as various Elastic													
Course Out	Moduli Course Outcomes: After successful completion of the course, the student will be able to:													
	comes. 7 m		ii compiciti		urse, the st									
<b>CO</b> 1	Understa	nd the stress	strain heh	aviour of di	fferent ma	erials (BL-	.2)							
CO 2	Explain t	he hardness	of differen	t materials	(BL-2)		2)							
$\frac{\text{CO 2}}{\text{CO 3}}$	Identify t	he differenc	e hetween	compressio	n and tensi	on testing (	BI -3)							
CO4	Find the Y	Young's me	dulus of th	e material l	v conducti	ng deflectio	on test(RL -	1)						
	I life the	he toughnes	s of a spec	imen using	Impact test	ing machir	$\frac{(BI - 3)}{(BI - 3)}$	1)						
	Identify t	ne touginies		inten using	impact test	ing macini	IC (DL-3)							
			COU	RSE CON	ГЕНТ									
	Т	ask 1 Tens	ion on U.T.	.M.										
Study the stres on U.T.M	ss – strain r	elations of (	(a) Mild Ste	el b) Cast i	ron and (c)	Tor Steel b	e conductii	ng tension test						
	Т	ask 2 Com	pression te	st on U.T.N	И.									
Study the strest compression t	ss – strain r est on U.T.	elations of ( M	(a) Mild Ste	el b) Cast i	ron and (c)	Tor Steel b	oe conducti	ng						
	Т	ask -3 Com	pressive a	nd Shear st	rength.									
Find the comp tests.	pressive and	l shear stren	igth of woo	d and shear	strength of	GI sheet b	y conductin	ıg relevant						
	Т	ASK -4 Bri	innell's and	d Vicker's	hardness.									
E's 1 (b - Daim		7. 1	1		(		·							
(d) Copper	ien s and v	icker s narc	iness numb	ers of (a) S	leel (b) Bra	ss (c) Alun	nnum							
(u) copper.	т	ASK 5 M	dulue of r	aidity										
Dotormino the	Modulus c	ASK -5 MI	) Solid shot	$\frac{g(u)}{f(h)} = \frac{1}{2}$	w choft ma	do of stool	and							
oluminium	infocultus c	of fighting (a	) Sond sha		w shart ma	ue of steel a	ano							
alummum.														
	Г	TASK-6 Co	mnression	and Tensil	e tests									
Find the sprin	g index and	1 modulus o	f rigidity of	f the materi	al of a sprin	ng by cond	ucting							
compression a	and tensile t	tests.	i figiality of		ai oi a spin	ing by cond	ucting							
<b>I</b>	Т	ASK -7 De	eflection te	st.										
Determine the	Vouna'a n	a dulug of f	ha matarial	hy conduct	ing deflect	ion tost on	o aimm1.							
supported, and	d continuou	is beams.	ne material	by conduct	ing deflect	ion test on	a simply							
TASK -8 Deflection test.														
Determine the cantilever bea	Young's n m	nodulus of t	he material	by conduct	ing deflect	ion test on j	propped							
	7			-41-										

# TASK -9 Impact strength .

Find impact strength of a given material by conducting a Charpy test

## TASK -10 Impact strength.

Find impact strength of a given material by conducting a Izod test

## Additional Experiments:

## TASK -11 Deflection.

Determine the deflection in leaf spring with a single leaf and multiple leafs.

## TASK -12 Bending Test

Determine the bending stress by conducting Bending test on 1. Mild steel 2. Wood

#### VirtualLabs

htt p://sm-nitk.vlabs.ac.in/

#### Text Book(s):

1. F.P.Beer, E.R.Johnston, Jr&John.T.DeWolf, "Mechanics of Materials", 7thedition, TataMcGraw-Hill, 2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, JaanKiusallaas&M.M.M.Sarcar (SecondEdition), Cengage Learning Publishers.

## **Reference Book(s):**

1. Timoshenko, "Strength of Materials Part-I& II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria& Sons, 2ndEdition,2011.

	NARAYANAENGINEERINGCOLLEGE:NELLORE											
		Computer Aided Machine Drawing Lab R2020										
Semester	H	Hours /Weel	k	Total	Credit		ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
IV	0	1	2	48	2	40	60	100				

**Pre-requisite:** Should possess basic knowledge in Engineering drawing, Standards, Dimensioning and preparation of neat drawings and to understand symbols used in engineering drawings.

## **Course Objectives:**

- 1. To introduce students to the basics and standards of engineering drawing related to machines and components.
- To teach students technical skills regarding assembly, production and part drawings.
   3.To help students gain knowledge about standard CAD packages on modelling and

   drafting.
- 3. 4. To Communicate about the assemble and part drawings through the computer aided drawings.5.To familiarize students with various limits, fits and tolerances.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Define various standards, specifications, dimensioning methods followed while preparing
	Engineering drawings. (BL-1)
CO 2	Understand and practice to represent symbols for Foundation bolts and keys in
	drawings.(BL-2)
CO 3	Develop, assemble and sketch assembled views of mechanical systems. (BL-3)
<b>CO 4</b>	Develop suitable drawing views to represent part drawings of different machine parts in
	CAD software. (BL-3)
CO 5	Design machine components and assembly using CAD software. (BL-3)

	CO-PO Mapping												
СО		PO											
	PO	PO											
	1	2	3	4	5	6	7	8	9	10	11	12	1
CO1	1	1										1	1
CO2	1	1										1	1
CO3												1	1
CO4	1	1										1	1
CO5	1	1										1	2
	•	1: Lo	w, 2-N	/lediun	n, 3-Hi	igh	•	•	•		•		-

# **COURSE CONTENT**

PART -A The following contents are to be done by any 2D software package

## Task 1

- 1. Conventional representation of materials.
- 2. Conventional representation of machine components.

## Task 2 Conventional representation

- 1. Conventional representation of dimensioning on the drawings.
- 2. Conventional representation sectional views.

#### Task -3 Detachable joints

Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts.

# PART B

#### The following contents are to be done by any 2D software package

# TASK -4 Riveted joints

Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.,

## TASK -5 Welded joints

Lap joint and T joint with fillet, butt joint with conventions

#### TASK-6 Keys & Couplings

Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. Shaft coupling, bushed pintype flange coupling, universal coupling, Oldhams' coupling

#### PART-C

The following contents are to be done by any 3D software package:

# TASK -7 Assembly drawings

Lathe tool post, , tail stock, machine vice, gate valve

#### **TASK -8** Assembly drawings

screw jack, plumber block, clamping device, Geneva cam, universal coupling, connecting rod, eccentric.

#### Additional Experiments:

#### TASK -9 Manufacturing drawing

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

## Text Book(s):

1.K.L. Narayana, P. Kannaiah, "A text book on Engineering Drawing", SciTech Publications, 2014 2. N.D.Bhatt, "Machine Drawing", Charotar, 50th edition, 2014.

3"Software tools/packages", Auto CAD, Solid works or equalent.

4. Machine Drawing With AutoCAD, GoutamPohit, GoutamGhosh, Pearson Publications

#### **Reference Book(s):**

1. CecilJensen, JayHelsel and Donald D.Voisinet, "Computer Aided Engineering Drawing", TataMcGraw-Hill, NY,2000.

2. James Barclay, Brain Griffiths, "Engineering Drawing for Manufacture", Kogan PageScience, 2003.

3. K.L. Narayana, "Production Drawing", NewAge International Publishers, 3rdedition, 2014

4.P I Varghese and K C John, Machine Drawing, VIP Publishers, 2011

	NARAYANA ENGINEERING COLLEGE:NELLORE											
	Design of Transmission Systems R2020											
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	:ks				
	L	Ť	T P hrs C CIE SEE									
VI	3	0	0	48	3	40	40 60 100					
Course C	Course Objectives:											
1. To g	gain knov	vledge or	n the prin	ciples and	d procedu	re for the	e design o	of				
Mee	Mechanical power Transmission components.											
2. To 1	2. To understand the standard procedure available for Design of											
Tra	nsmissio	n of Mec	hanical el	ements								
3. To 1	learn to u	ise stand	ard data	and catal	ogues							
Course O	utcomes	: After s	uccessfu	l comple	tion of th	ne course	e, the stu	dent will				
be able to	:			- <b>T</b>			,					
CO 1	Design	for the o	lifferent	types of	belt drive	es (BTL-	4)					
CO 2	Design	for the s	spur gear	and an	alysis of	speed ra	tios (BTI	4)				
CO 3	Design	of bevel	, worm a	nd helica	al gears (	BTL-4)	•	ł				
CO 4	Design	of differ	ent gear	boxes (B	TL-4)							
CO 5	Design	of cams	and ana	lysis of p	orofiles (I	3TL-4)						

	CO-PO Mapping													
	PO													0
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
<b>CO1</b>			3		1									
CO2		2	3		1									
<b>CO3</b>			3		1									
CO4			3		1									
CO5		2	3		1									
	1: Low, 2-Medium, 3- High													

COURSE CONTENT												
UNIT - I	DESIGN OF FLEXIBLE ELEMENTS	10 Hours										
Design of Flat belts and	Design of Flat belts and pulleys — Selection of V belts and pulleys —											
Selection of hoisting wire ropes and pulleys — Design of Transmission												
chains and Sprockets												
At the end of the UNIT-1.	students will be able to:											
1. Getting knowledge a	bout the belt and belt drive	es										
2. To understand the power transmission.												
UNIT - II	SPUR GEARS AND	9 Hours										
	PARALLEL AXIS HELICAL											
	GEARS											
Speed ratios and number of teeth-Force analysis -Tooth stresses — Dynamic effects — Fatigue strength — Factor of safety — Gear materials — Design of straight tooth spur & helical gears based on strength and wear considerations — Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.												
At the end of the UNIT-II, s 1. To analysis the forc 2. To study the pressu	students will be able to: se on the teeth are on gears											
UNIT - III	BEVEL, WORM AND CROSS HELICAL GEARS	10 Hours										
Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits- terminology. Thermal capacity, materials- forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.												
At the end of the UNIT-III,	students will be able to:											
1. Explain construction	1. Explain construction of bevel gear											
2. Classification gears and terminology of the gear												
3. estimating the gear s	3. estimating the gear size											
UNIT - IV	GEAR BOXES	10 Hours										

Geometric progression — Standard step ratio — Ray diagram, kinematics layout -Design of sliding mesh gear box — Design of multi speed gear box for machine tool applications — Constant mesh gear box — Speed reducer unit. — Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

At the end of the UNIT-IV, students will be able to:

- 1. To learn about the gear box operation
- 2. To learn about gear changing and gear operations
- 3. To convert torque converters

UNIT - VCLUTCHES AND BRAKES9 HoursDesign of plate clutches -axial clutches-cone clutches-internal expanding rim<br/>clutches- Electromagnetic clutches. Band and Block brakes — external shoe<br/>brakes — Internal expanding shoe brake.9 Hours

At the end of the Module 5, students will be able to:

- 1. To design the cam for automobile
- 2. To learn about the clutches operations
- 3. To study the break operations

Total hours: 48 hours

# Content beyond syllabus:

# 1. To learn about advanced braking system

# Self-Study:

Contents to promote self-Learning:

SN	Торіс	СО	Reference
0			
1	Design for the	CO1	https://www.slideshare.net/246199
	different types of belt		8/types-of-belt-drives
	drives		
2	Design for the spur	CO2	https://www.slideshare.net/YashSha
	gear and analysis of		h328/spur-gear-and-design-of-spur-
	speed ratios		gear
3	Design of bevel, worm	CO3	https://egyankosh.ac.in/bitstream/
	and helical gears		123456789/31615/1/Unit-11.pdf
4		CO4	https://www.lnjpitchapra.in/wp-
	Design of different		content/uploads/2020/05/file_5eafb
	gear boxes		<u>f547618e.pdf</u>

5	Design of cams and	CO5	https://www.youtube.com/watch?v=g3k
	analysis of profiles		<u>dVRQ-dKk</u>

**TEXT BOOK** . Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.

2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

# **REFERENCES:**

1. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

2. Gitin Maitra, L. Prasad "Hand book of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001.

3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.

4. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003

# **Online Resources:**

https://easyengineering.net/me6601-design-of-transmission-systems/

# Web Resources:

https://www.youtube.com/watch?v=AAJyUk4wHfI https://www.youtube.com/watch?v=dBHOMtGquuo https://www.youtube.com/watch?v=FDyo3u2WOIM

NARAYANA ENGINEERING COLLEGE:NELLORE											
			Therma	al Power S	Systems			R2020			
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
V	3	0	0	48	3	40	60	100			
Pre-Requisite: Thermal Power Systems											
Course O	Course Objectives:										
1. To unde	rstand wor	king stear	n power pl	lant							
2. To expla	2. To explain the functions of steam nozzle										
3. To draw	3. To draw velocity diagram of steam turbine										
4. To unde	rstand wor	king of jet	t propulsio	n							
5 To defin	e the basic	s of refrig	eration and	d air condi	itioning sy	stem					
Course Ou	itcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	e to:			
<u> </u>	<b>T</b>		<u> </u>								
CO 1	Interpret	the layout	of various	steam po	wer plant a	ind boilers	operation	. (BTL-5)			
CO 2	CO 2 Understand the stagnation properties.(BTL-2)										
<b>CO 3</b>	CO 3 Solve the problems on turbine velocity diagram. (BTL-6)										
<b>CO 4</b>	Explain th	e working	of gas turbi	nes. (BTL-	2)						
CO 5	Analyze tł	ne working	of vapor co	ompression	refrigeratio	on cycle. (B	TL-4)				

					C	CO-PC	) M	lapping						
CO						Р	0						PSO	
	PO	PO												PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	3	2										3	
CO2	3	3	2										3	
CO3	2	3	2										3	
CO4	3	2	2										3	
CO5	3	2	2										3	
					1: Lo	w, 2-M	[edi	ium, 3- Hi	igh					

COURSE CONTENT												
MODULE – 1	STEAM POWER PLANT & BOILERS	9 Hours										
Steam Power Plant: Rankine cycl addition, Methods to improve	e -Thermodynamic analysis, Con cycle performance – Regen	cept of mean temperature of heat eration & Reheating. Boilers:										
principles – Boiler horse power, E	Equivalent evaporation, Efficiency	<i>u</i> – Draught, Classification .										
At the end of the Module 1, stud	ents will be able to:											
1. Explain the concept of	f mean temperature of heat additi	on										
2. Interpret the steam pov	wer plant and boiler operation											
3. List out the boiler mountings and accessories												
MODULE -2	STEAM NOZZLES &	10 Hours										
	CONDENSERS											
Steam Nozzles: Stagnation Prop	eam Nozzles: Stagnation Properties – Function of a nozzle – Applications and types – Flow											
hrough nozzles – Thermodynamic analysis - Condition for maximum discharge, Critical												
pressure ratio, Super saturated fl	ow– Degree of super saturation a	and degree of under cooling -										
Wilson line. Steam Condensers:	Requirements of steam condensi	ing plant – Classification of										
condensers – Working principle	of different types – Vacuum effi	ciency and condenser efficiency										
At the end of the Module 2, stud	ents will be able to:											
1. Explain the condition for	or maximum discharge											
2. Define the Critical pres	ssure ratio											
3. Classify different types	s of condensers											
MODULE-3	STEAM TURBINES	10 Hours										
		L										
Impulse Turbines: Classificatio	n Impulso Turbino Machanica	l dataila Valaaity diagram										
Effect of friction Power develo	and axial thrust Blade or diagra	am efficiency De-laval turbine-										
Methods to reduce rotor speed	- Velocity and Pressure com	pounding = Combined velocity										
diagram for Impulse turbine. Rea	action Turbines: Mechanical deta	ails – Principle of operation										
At the end of the Module 3, stud	ents will be able to:											
1. Explain the working imp	ulse turbine											
2. Solve the problems on ve	elocity diagram											
MODULE-4	MODULE-4     GAS TURBINES & JET PROPULSION     9 Hours											

Gas Turbines: Simple gas turbine plant –Essential components – Parameters of performance – Actual cycle – Regeneration, Inter cooling and reheating – Closed and Semi-closed cycles. Jet Propulsion: Classification of jet propulsive engines – Working principles with schematic diagrams and T-s diagram - Turbo jet engines Rockets: Application – Working principle – Classification – Propellant type – Thrust, Propulsive efficiency.

At the end of the Module 4, students will be able to:

- 1. Explain the working principle of Simple gas turbine plant
- 2. Differentiate between closed and semi closed cycles

MODULE-5	<b>REFRIGERATION &amp; AIR</b>	10 Hours
	CONDITIONING	

Refrigeration: Bell-Coleman cycle - Vapor compression cycle, sub cooling and super heating-Vapor absorption cycle, properties of common refrigerants. Air Conditioning: Principles of Psychometric Psychometric properties, psychometric processes, summer and winter air conditioning systems.

At the end of the Module 5, students will be able to:

- 1. Gain knowledge on Refrigeration
- 2. Explain the working of vapour compression cycle

Total hours: 48 hours

Co	ntent b	eyond syllabus:		
	1. La	test advancement in stea	am power	plant
Sel	f-Study	V:		
C	ontents	to promote self-Learn	ing:	
	SN	Торіс	CO	Reference
	0			
	1	Steam Power Plant:	CO1	https://energyeducation.ca/encyclopedia/Rankine_cycle
		Rankine cycle		
	2	Steam Nozzles:	CO2	https://nitsri.ac.in/Department/Mechanical%20Engineeri
		Stagnation		ng/MEC 404 Steam Nozzle Lecture Notes Part II.pd
				<u>f</u>
	3	Impulse Turbines:	CO3	https://www.energy.gov/eere/water/types-hydropower-
		_		

	Classification		turbines#:~:text=The%20two%20main%20types%20of,	
			Pelton%20and%20cross%2Dflow%20turbines.	
4	Gas Turbines:	CO4	https://netl.doe.gov/sites/default/files/gas-turbine-	Ī
	Simple gas		handbook/1-1.pdf	
	turbine plant			
5	Refrigeration:	CO5	https://www.mecholic.com/2017/12/bell-coleman-	
	Bell-Coleman		refrigeration-cycle.html	
	cycle			

# Text Book(s):

- 1. R. K. Rajput (2010), A text book of Thermal Engineering, Fourth Edition, Laxmi Publications,. New Delhi, India.
- 2. Thermal Engineering by R S Khurmi & GK Guptha6thedition.2006
- 3. Principles of Applied Thermodynamicsbymorani8THedition,SIversion.2015

## **Reference Book(s):**

- 1. Yonus A Cengel and Michael A Boles, Applied Thermodynamics: An Engineering Approach, McGrawHill, 2002.
- 2. Thermal Engineering by R. Yadav 5 THedition, LaxmiPublications, NewDelhi, India. 2020
- 3. Applied Thermodynamics, work and heat-transfer by Gordonrogers4THedition, personeducation india2002.

## Web Resources:

- 1. https://www.youtube.com/watch?v=SPg7hOxFItI
- 2. <u>https://www.youtube.com/watch?v=m3-2NogJZQk</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE											
			Dynamic	s of Mac	hinery			R2020				
Semester	Ho	urs / W	eek	Total	Credit		Max Mar	rks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
VI	3	0	0	48	3	40	60	100				
Course (	Course Objectives:											
<ol> <li>Exp</li> <li>Ana</li> <li>flyv</li> <li>Far</li> <li>mo</li> <li>Use</li> <li>Exp</li> </ol> Course O be able to	<ol> <li>Explain the importance of friction and apply for brakes and dynamometers</li> <li>Analyze the turning moment diagrams and discuss the applications of flywheel</li> <li>Familiarizes the concept of gyroscope and its applications for aero plane, motor cycle and motor cars</li> <li>Uses of governors and its applications</li> <li>Explain the need of balancing of rotating and reciprocating masses</li> <li>Course Outcomes: After successful completion of the course, the student will</li> </ol>											
CO 1	Understa vehicles	and the e (BTL-2)	effect of re	eactive gy	roscopic	couple or	n the stab	ility of				
CO 2	Understa	and the ı	use of gov	ernors (E	3TL-2)							
CO 3	Identify	and corr	ect the ur	nbalances	s of rotati	ng body (	BTL-4)					
CO 4	Reduce	the magn	itude of v	vibration	(BTL -4)							
CO 5	Explain	isolate v	ribration o	of dynam	ic system	s (BTL-4)						

						C	O-PC	) Ma	ppir	ıg					
							PO						PSO		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
<b>CO1</b>			3		2										
CO2			3		2										
<b>CO3</b>			3		2										
CO4			3		2										
CO5			3		2										
	•	•	•	•	1:	Low	, 2-N	Iediu	ım, 3	- Hig	gh	·	÷		

	COURSE CONTENT	
MODULE- I	PRECESSION , TURNING MOMENT DIAGRAMS AND FLYWHEELS	10 Hours
PRECESSION: C moving vehicles TURNING MOME for steam engine of Fluctuation of their design, Fly	Gyroscopes, effect of precession motion on the such as motor car, motor cycle, aeroplane CNT DIAGRAMS AND FLY WHEELS: Turning mor , IC Engine and multi cylinder engine. Crank effect f energy, coefficient of Fluctuation of speed – F wheels for Punching machines.	ne stability of es and ships. nent diagrams ort - coefficient 'ly wheels and
At the end of the	MODULE -1, students will be able to:	
1. To unders	stand the precession and turning moment	diagrams
MODULE - II	GOVERNORS	9 Hours
GOVERNORS: Wat and Hartung gover <u>hunting. Effort and</u> At the end of the 1. To find th	t, Porter and Proell governors. Spring loaded gov mors with auxiliary springs. Sensitiveness, isoch <u>a power of a governor.</u> MODULE -II, students will be able to: e different types of governors and uses	ernors – Hartnell ronism and
MODULE- III	BALANCING OF ROTATING & RECIPROCATING MASSES	10 Hours
BALANCING: Balat planes. BALANCIN of reciprocating ma couples -Vengine, balancing	ncing of rotating masses - single and multiple – s G OF RECIPROCATING MASSES: Primary and S asses. Analytical and graphical methods. Unbala multi cylinder inline and radial engines for prima	single and different econdary balancing nced forces and ary and secondary
At the end of the 1. Study the ba	MODULE -III, students will be able to: lancing of masses	
MODULE - IV	VIBRATION	10 Hours
Free and forced vib of shafts and critic	oration of single degree of freedom system, Role or all speeds. Simple problems on free, forced and d	of damping, whirling amped vibrations.
At the end of the 1. To learn the	MODULE-IV, students will be able to: vibration effect	
MODULE - V	VIBRATION ISOLATION & TRANSMISSIBILITY	9 Hours
Vibration Isolation concentrated and o vibrations - two an	& Transmissibility. Transverse vibrations of bea distributed loads. Dunkerly's method, Raleigh's r id three rotor systems	ms with nethod. Torsional

At the end of the MODULE V, students will be able to:

# 1. To study the vibration in working conditions

Total hours: 48 hours

TEXT BOOK

1. S.S. Rattan, "Theory of Machines", MGH Publishers, 3rd Edition, 2013.

2. R.L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw Hill.2009 REFERENCES:

1. Thomas bevan, "Theory of machines", Pearson, 3rd edition, 2012.

2. Shigley et.al. "Theory of machines and mechanisms" of Oxford international student edition. 2011

3. R.S Khurmi, "Theory of machines", S.Chand publications, 14TH 2020

# Web Resources:

https://www.youtube.com/watch?v=0UhDnbsTuU8 https://www.youtube.com/watch?v=9r630K5HmJc&list=PLSGws_74K01_p G3R7rgtDtrDZBjcTgPdR

	NA	RAYANA	<b>ENGINI</b>	EERING	COLLEG	E: NELL	ORE					
			HE	AT TRANSF	ER			R2020				
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
OE	3	0	0	48	3	40	60	100				
~ ~												
1 2 3 4 5	<ol> <li>To impart the basic laws of conduction, convection and radiation heat transfer and their applications</li> <li>To familiarize the convective heat transfer concepts</li> <li>To explain basics of radiation heat transfer</li> <li>To explain basics of radiation heat transfer and to make conversant with the heat transfer analysis related to thermal systems like heat exchangers, evaporator, and condenser.</li> <li>To understand the phenomenon of boiling and condensation to familiarize the mass transfer process</li> </ol>											
Course Out	tcomes: Af	ter success	ful compl	etion of th	e course, t	he student	will be ab	le to:				
CO 1	Apply the various ap	conductior	n, convectic	on and radia	ation mode	of heat tra	nsfer throu	ıgh				
CO 2	Evaluate h	ieat transfe	er for forced	d and free o	convection	application	S					
CO 3	Explain the	e radiation	heat transf	fer problem	ıs.							
CO 4	Calculate LMTDanc	the parar	neters of h thods for v	ieat excha arious app	ingers, cor olications.	ndensers a	and evapoi	rator using				
CO 5	Apply prin	ciples of he	eat and ma	ss transfer	to basic the	ermal engin	eering syst	ems				

					(	CO-PO	M	apping						
СО				PSO										
	PO	PO											PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	1												2
CO2	2		2									1		
CO3	1	2	1											
CO4	2	1	1		2				2				1	1
CO5	2			1	2							1		
	1: Low, 2-Medium, 3- High													

NARAYANA ENGINEERING COLLEGE: NELLORE													
			HEAT	AND MA	SS TRANS	SFER		R2020					
Semester	H	Iours	/ Week	Total	Credit		Max	Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
V	3	0	0	48	3	40	60	100					
			(	COURSE	CONTENT								
MODULE	- 1	I	NTRODUCT Conduction H	ION Basic leat transf	c Modes of fer	Heat Tra	nsfer and	11 H					
Introduction	: Basic n	nodes	of heat transf	er- rate eq	uations- gei	neralized h	neat conduc	ction equation - steady state					
heat conduc	tion solut	tion fo	or plain and co	omposite s	labs - cylin	ders - criti	cal thickne	ss of insulation- heat					
conduction through fins of uniform cross section- fin effectiveness and efficiency.													
MODULE -2Convection Heat Transfer11 H													
Convection:	Convection: Basic concepts of convection-heat transfer coefficients - types of convection – forced convection												
and free co	and free convection. Forced convection in external flow-concepts of hydrodynamic and thermal boundary												
layers- use	of empiri	ical co	orrelations for	flow over	r plates and	cylinders	. Fluid fric	tion – heat transfer analog					
approximate	e solutior	n to la	uminar bounda	ary layer e	equation for	external	flow. Inter	nal flow – Use of empiric					
relations for	convecti	ive he	at transfer in l	norizontal	pipe flow.								
MODULE	-3		Rad	iation He	at Transfei	•		8 H					
Radiation: F	Radiation	heat	transfer – ther	mal radiat	ion – laws o	of radiation	n - Black a	nd Gray bodies – shape					
factor-radiat	tion exch	ange	between surfa	ces - Radi	ation shield	s - Greenh	ouse effec	t.					
MODULE	-4		I	Ieat Exch	angers,			12 H					
			Boili	ng and C	ondensatio	n							
Heat Exchar	ngers: Ty	pes c	of heat exchan	gers- para	allel flow- c	ounter flo	w- cross fl	ow heat exchangers- overa					
heat transfer	coeffici	ent- L	MTD and NT	U method	ls- fouling in	n heat excl	hangers.	C					
					0		8						
MODULE-5 Mass Transfer 06 H													
Mass Transfer: Conservation laws and constitutive equations - Fick's law of diffusion, isothermal equi-													
mass - Equimolal diffusion diffusion of gases and liquids- mass transfer coefficient.													
								4.1 h					
							Т	otal nours: 48f1					

# Text Book(s):

1. P.K. Nag, "Heat Transfer", 3rd edition, Tata McGraw-Hill, 2011.

2. S.P. Sukhatme, "A Textbook of Heat Transfer", Universities Press, TMH publications 2005

#### **Reference Book(s):**

1. J.P.Holman, "Heat Transfer", 9th edition, Tata McGraw-Hill,2008.

2. Cengel. A.Yunus, "Heat Transfer", A Practical Approach, 4th edition, Tata McGrawHill, 2007.

3. Lienhard and Lienhard, "A Heat and Mass Transfer", Cambridge Press, 2011.

4. C.P. Kothandaraman and S. Subramanyan, "Heat and Mass Transfer databook", New Age Publications, 2014

	NARAYANA ENGINEERING COLLEGE:NELLORE           COMPLITER INTEGRATED MANUFACTURING         R2020														
			COM	PUTE	R IN]	<b>FEGR</b>	ATED	MAN	UFAC	TURI	NG			R2(	)20
Semester		Hour	s / We	ek		Tota	l hrs	Cred	lit			Ma	x Mar	ks	
	L		Т	I	)				С		CIE	S	SEE	Т	OTAL
	3		0	(	)	4	8		3		40		60		100
Course Ob	ojective	es:													
	1. T	o unde	erstand	l the b	asic c	oncep	ts of C	CAD/C	CAM i	in CIM	1 envi	ronme	ent.		
	2. T	o deve	elop a	n und	erstar	nding	of the	unde	rlying	know	ledge	and	relate	d m	ethods of
	С	omput	er Aic	led Pr	ocess	Plann	ing.								
	3. T	o unde	erstand	the d	liffere	ent me	thods	to im	prove	applic	cation	of Gr	oup 7	Tech	nology ir
	m	anufa	cturing	3.											
	4. T	o unde	erstand	l the u	se of	FMS i	n CIM	I envi	ronme	ent.					
	5. T	o unde	erstand	l the u	se of	roboti	cs in n	nanufa	acturir	ng env	ironm	ent.			
<b>Course Outcomes</b> :After successful completion of the course, the student will be able to:															
CO1 Apply the concepts of CAD/ CAM systems in CIM.(BL-3)															
CO2	Examine the integration of computer in process & production planning.(BL-1)														
CO3	E	xtend	the co	ncept	of GT	Γ to im	prove	effici	iency i	in mar	nufacti	uring.	.(BL-2	2)	
CO4	O4 Apply the concept of AGV'S in FMS to improve material handling.(BL-3)														
CO5 Identify the application of robotic technology in CIM environment.(BL-2)															
						<u>CO-I</u>	<u>PO Ma</u>	pping	5				1		DGO
СО	<b>D</b> O	DO	DO	DO	DO	P P		DO	DO	DO	DO	DO	DC	24	PSO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO</b>	<b>PO</b>	<b>PO</b>	PSC	)1	PSO2
C01	3	3	2	4	<b>5</b>	0	/	ð	9	10	11	12	2		2
	3	3	1	1	-	-	-	-	-	-	-	_	2		2
CO2	2	$\frac{3}{2}$	-	-	-	-	_	-	-	_	-	-	1		1
CO4	2	2	2	2	2	-	-	-	-	-	-	-	2		2
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2		2
					1:1	Low,2-	Mediu	m,3-H	ligh						
					C	COURS	SE CO	NTEN	T						
MODU	F 1														<u>)1</u> .
MODUI	7F – I					INTI	KODU	CTI	JN						In
Brief introd Engineering Manufactur Production	uction - CIM ing Co and Jus	to CA conc ntrol - st-In-T	D and cepts — Ba Time P	l CAN – Con sic El roduc	A − M mpute ement tion.	Ianufa rised ts of a	cturing eleme n Aut	g Plan nts of omate	nning, f CIN ed syst	Manu I syst tem –	factur em – Level	ing co Types ls of 2	ontrol of p Auton	– C produ natic	oncurrent action — on — Lear
MODU	LE -2			CO	MPU	<b>FERIS</b>	ED PH	ROCE	SS PL	ANNI	NG				10h
Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aided Process Planning – Aggregate Production Planning and the Master Production Schedule – Material Requirement planning – Capacity Planning- Control Systems-Shop Floor Control															
MODU	<b>F</b> 2				CEL		<b>D №</b> ГА		СТІТ	DINC					Ob
MODU	LE-J				CEL	LULA	K MA	NULA		AING					911
Group Tech Production : and layout - Arranging N	Group Technology(GT), Part Families – Parts Classification and coding ,Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method – Arranging Machines in a GT cell – Hollier Method														

#### FLEXIBLE MANUFACTURING SYSTEM (FMS)

10h

Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control—. Automated Guided Vehicle System (AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.

MODULE-5INDUSTRIAL ROBOTICS10h

Robot Anatomy and Related Attributes – Classification of Robots- Robot Control systems – End Effectors – Sensors in Robotics – Robot Accuracy and Repeatability - Industrial Robot Applications – Robot Part Programming

Total hours: 48 hours

# Text Book(s):

1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.

2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

# **Reference Book(s):**

1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.

2. Gideon Halevi and Roland Weill, "Principles of Process Planning – A Logical Approach" Chapman & Hall, London, 1995.

3. Rao. P, N Tewari & T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

	NA	RAYANA	A ENGINI	EERING	COLLEG	E: NELL	ORE						
			Smar	rt Mater	ials			R2020					
Semester	H	ours / We	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
OE	3	0	0	48	3	40	60	100					
Course Objectives:													
1. To study various types of smart materials used in engineering application.													
2. To study various properties i.e. optical, electric, dielectric etc. of smart materials.													
3. То	<ol> <li>To study different synthesis techniques of smart materials.</li> </ol>												
4. To	study differ	ent charac	terization to	echniques	of smart m	aterials.							
5 70				+oniolo ovol			<b>ata</b>						
5. 10	study device	es based o	n smart ma	terials such	as sensors	s, actuators	etc.						
Course Out	tcomes: Aft	ter succes	sful compl	etion of th	e course t	he student	will he ah	le to:					
CO 1	Understa	nd various	s smart ma	iterial kind	ds applied	to enginee	ring. (BTL-	2)					
CO 2	Demonst	rate the v	arious opt	ical, electr	ic, dielectr	ic, etc. pro	perties of i	intelligent					
	materials	. (BTL-2)											
<u> </u>													
	Classify d	ifferent sn	nart mater	ial manufa	acturing m	ethods. (B	IL-4)						
CO 4	Explain va	arious met	thods for c	haracteriz	ing smart	materials.	(BTL-2)						
CO 5	Develop	products	made of sn	nart mate	rials, as se	nsors, actu	ators, etc.	(BTL-3)					

	CO-PO Mapping													
СО	PO PSO													
	PO													PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													1
CO2		1										1		1
CO3				1										
CO4	1	2											1	1
CO5				2								1		
					1: Lo	w, 2-N	ledium	າ, 3- Hi	gh					

COURSE CONTENT										
MODULE – 1	INTRODUCTION	9 Hours								

Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect

r seadoclasticity, one	way shape memory encet, two way shape memory e	211000
MODULE -2	PROPERTIES OF SMART MATERIALS	9 Hours
Physical principles of c	pptical, Electrical, Dielectric, Piezoelectric, Ferroelecti	ric, Pyroelectric and
Magnetic properties of	f smart materials	
MODULE-3	SYNTHESIS OF SMART MATERIALS	10 Hours
Solid state reaction teo	chnique, Chemical route: Chemical vapour deposition	, Sol-gel technique,
Hydrothermal method	l, Co-precipitation. Green synthesis, Mechanical allo	oying and Thin film
deposition techniques	Chemical etching, Sol-gel, spray pyrolysis	-
MODULE-4	CHARACTERIZATION TECHNIQUES	10 Hours
X-ray diffraction, Ram	an spectroscopy (RS), Fourier-transform infrared re	flection (FTIR), UV-
Visible spectroscopy, S	Scanning electron microscopy (SEM), Transmission el	ectron microscopy,
Atomic force microsco	py (AFM) and Differential Scanning Calorimetry (DSC)	).
MODULE-5	MATERIALS AND DEVICES	10 Hours
Characteristics of sha Metamaterials, Electri materials. Devices ba devices, Future scope	ape memory alloys, Magnetostrictive, Optoelectr ro-rheological and Magneto-rheological material sed on smart materials: Sensors & Actuators, ME of the smart materials. Tota	onic, Piezoelectric, s and Composite MS and intelligent
	1000	

# Text Book(s):

- 1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc.2002
- 2. Smart Materials and Structures M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

## **Reference Book(s):**

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electro ceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2 nd Edn., John Wiley & Sons, 2003.

Web Resou	rces:		
1.	https:/	/nptel.ac.in/courses	/112104173/

# 2. www.iop.org/EJ/article/0964-1726/5/3/002/sm6301.ps.gz

# MOOCs:

- 1. https://nptel.ac.in/courses/112104173/
- 2. https://nptel.ac.in/courses/112104251/

	NARAYANA ENGINEERING COLLEGE: NELLORE													
AUTOMATION IN MANUFACTURING														
Semester	Н	ours / Wee	ek	Total	Credit	Max Marks								
	L	T P		hrs	С	CIE	SEE	TOTAL						
OE 3 0 0 48 3 40 60														

COURSE OBJECTIVES:

1. To understand the principles of automation.

2. To understand and outline the system configurations used in atmated production.

3. To recognize and articulate the foundational assumption of the transfer mechanism, types of transfer mechanism that may be used for work part transfer

4. To understand principle of FMS and group technology.

5. To understand importance of inspection.

**Course Outcomes**: After successful completion of the course, the student will be able to:

CO 1	understand to know what is automation, types of automation, components of automation, strategies and levels of automation.(BTL-1)												
CO 2	understand to know basic elements of automated systems.(BTL-2)												
CO 3	understand the components of manufacturing systems.(BTL-2)												
CO 4	understand the group technology and flexible manufacturing systems .(BTL-2)												
CO 5	understand importance of inspection .(BTL-3)												

	CO-PO Mapping													
СО		РО												
	PO	PO         PO<												PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3		3											2
CO2	3				3							1		
CO3	3			1										
CO4	3	1							2				1	1
CO5	3			2								1		
					1: Lo	w, 2-N	ledi	um, 3- Hi	gh					

	NAF	AYAN	A ENG	INEERIN	G COLL	EGE::NEI	LORE					
		A	UTOMA	TION IN	MANUFA	CTURING	ſ	R20	020			
Semester	Hours / V	Week	То	tal hrs	Credits	Max Mark	S.					
	L T	Р			С	CIE	SEE	T	OTAL			
VII	3 0	0	48		3	40	60	10	00			
-				COURSE	CONTENT	[			1			
MODULE- I				INT	RODUCTI	ON			10 Hrs			
Production System Facilities, Manufacturing Support systems, Automation in Production systems, Automation principles & Strategies Manufacturing Operations, Product/Production Polationship, Production												
Automation principles & Strategies Manufacturing Operations, Product/Production Relationship, Production concepts .												
MODULE- II         INDUSTRIAL CONTROL SYSTEM         9 Hrs												
Basic Elements	of an Au	tomated	System	, Advance	ed Automat	ion Function	ons & Levels	of Au	itomation,			
Continuous versus Discrete control, Computer Process control, Forms of Computer Process Control.												
MODULE- III         AUTOMATED MANUFACTURING SYSTEMS         10 Hrs												
Components of a	a Manufac	turing s	ystems, (	Classificat	tion of Man	ufacturing	Systems, over	view o	f Classification			
Scheme, Single	Scheme, Single Station Manned Workstations and Single Station Automated Cells.											
MODULE- I	V GR	OUP T	ECHNO	LOGY 8	& FLEXIB SYSTEMS	LE MANU	JFACTURIN	G	9 Hrs			
Part Families, I	Parts Clas	sificatio	on and o	coding, P	roduction H	Flow Analy	ysis, Cellular	Manu	facturing, Flexible			
Manufacturing S	Systems:	What is	s an FM	IS, FMS	Component	ts, FMS	Applications	& B	enefits, and FMS			
Planning & Imp	lementatio	on Issue	es.									
	7		ING	DECTIO	N TECUN		2		10 Hrg			
Automated Insp	ection C	oordina	te Meas	rECHO	chines Con	ortruction	operation &	Drogra	10 HIS			
Application & D Optical Inspection	Benefits, 1 on Techni	Flexible	Inspect Non-coi	ion Syste	m, Inspecti -optical Ins	on Probes	on Machine chnologies	Tools	, Machine Vision,			
							Total	Hours	48 Hrs			
TEXT BOOKS	5:								<u>I</u>			
1. Automation,	Production	n Syster	ms and C	Computer	Integrated	Manufactu	ring: M.P. G	roover	./PE/PHI 2016			
2. Computer C	control of	Manufa	cturing S	Systems: Y	Yoram Kore	en 2019	U					
REFERENCES	:		0	•								
1. CAD/CA 2007	M/CIM,	(2 nd E	dition),b	y Radha l	krishnan an	d Subrama	nian, New Ag	ge Pub	lications,			
2. CAD /	CAM/ CI	M by R	adhakris	hnan.2008	3							

3. Automation by W. Buekingham.1968

	NAF	RAYANA	ENGINI	EERING	COLLEC	E:NELL	ORE						
		А	UTOMATI	ION & RC	BOTICS			R2020					
Semester	Но	urs / W	eek	Total	Credit		Max Max	rks					
	L	T	Р	hrs	С	CIE	SEE	TOTAL					
VII	3	0	0	48	3	40	60	100					
Pre-Requ	Requisite: CAD/CAM												
Course Objectives:													
<ol> <li>To Understand robot configuration, structures, basic components, workspace and generations of robots.</li> <li>To Get acquainted with performing spatial transformations and solve kinematics of the robot</li> <li>To Get knowledge and analysis skills associated with trajectory planning</li> <li>To Learn about various sensors, actuators, robot programming</li> <li>To Understand the present &amp;future applications of a robot</li> <li>Course Outcomes: After successful completion of the course, the student will be able to:</li> </ol>													
CO 1	Demons and actu	trate kno Jators. (H	owledge of 3TL-3)	f industri	al robots,	characte	eristics, e	nd effectors					
CO 2	Apply sp (BTL-3)	patial tra	nsformati	on to obt	ain forwa	rd and in	werse kin	ematics					
CO 3	Solve ro	bot dyna g (BTL-3)	mics prot	olems, gei	nerate joi:	nt traject	ory for pa	th					
CO 4	Describe operatio	e workiną ns (BTL-	g principle 2)	e of variou	us sensor	s and pro	ogram dif	ferent					
CO 5	Apply th	e applica	ations of r	obots in i	industry.	(BTL-3)							

	CO-PO Mapping														
СО		PO PSO													
	PO												PSO	PSO	
	1 2 3 4 5 6 C 8 9 10 11 12											12	1	2	
							7								
CO1			3					2							
CO2			3					2							
CO3			3					2							
CO4			3					2							
CO5			3					2							
		•	•	1	: Low	. 2-M	edi	um. 3- ]	High		•	•			

COURSE CONTENT					
MODULE – 1	AUTOMATION	10 Hours			

Introduction: Automation in production system, need, types, Principles and Strategies of automation, levels of automation, basic elements of an automated system, hardware components for automation and process control, mechanical feeders, hoppers, orienters, high speed automatic insertion devices.

At the end of the Module 1, students will be able:

- 1. To study the principle the different strategies of automation
- 2. To learn the different levels in automation
- 3. To study the automated flow lines

<b>MODULE -2</b>	ASSEMBLY LINE BALANCING	9 hours
	AND AUTOMATED	
	MANUFACTURING SYSTEM	

**Assembly Line Balancing:** Assembly process and systems assembly line, line balancing algorithms, ways of improving line balance, flexible assembly lines.

**Automated Manufacturing Systems:** Components, classification and overview of manufacturing systems, manufacturing cells, GT and cellular manufacturing, FMS and its planning and implementation.

At the end of the Module 2, students will be able :

- 1. To learn the assembly line balancing
- 2. To study the material handling identification
- 3. To study the automated system

<b>MODULE-3</b>	ROBOTICS	10 Hours

**Introduction:** Brief history of robots, classification of robot, functional line diagram, degrees of freedom. Elements of robot - types and its functions, factors to be considered in the design of grippers.

**Robot Actuators And Feedback Components:** Actuators, Pneumatic, Hydraulic actuators, Electric & Stepper motors, comparison. Position sensors - potentiometers, resolvers, encoders - velocity sensors, Tactile sensors, Proximity sensors

At the end of the Module 3, students will be able :

1. To study the classification of robot

2. To learn the actuators and components

MODULE-4	KINEMATICS AND DYNAMICS	9 Hours
	OF A MANIPULATOR	

**Manipulator Kinematics:** Homogenous transformations as applicable to translation, rotations- D-H notation, Forward and inverse kinematics.

**Manipulator Dynamics:** Differential transformations, Jacobians, Lagrange - Euler and Newton - Euler formations

At the end of the Module 4, students will be able:

# 1. To learn the manipulator kinematics

# 2. To study the dynamics

MODULE-5	ROBOT PROGRAMMING AND	10 Hours
	APPLICATIONS	

Robot Programming: Methods of programming - requirements and features of programming languages, software packages, problems with programming languages. Motion path control- slew motion, joint integrated motion, straight line motion; avoidance of obstacles

At the end of the Module 4, students will be able:

- 1. To learn the Methods of programming
- 2. To study the problems with programming languages

<b>Fotal</b>	hours:	48
		hours

# **Content beyond syllabus:**

**1.** Software related to psychometric processes

# Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
Ο			
1	Demonstrate knowledge of industrial robots, characteristics, end effectors and actuators.	CO1	https://blog.robotiq.com/bid/53266/ -End-Effector-Definition-and-Examples
2	Apply spatial transformation to obtain forward and inverse kinematics	CO2	https://www.google.com/search?q=Appatial+transformation+to+obtain+forw nd+inverse+kinematics&source=lnms& =vid&sa=X&ved=2ahUKEwjHreHV6bn7 XSmwGHXYdA3IQ_AUoAXoECAEQAw& 1440&bih=700&dpr=1#fpstate=ive&vlo c3c89f58,vid:EzNAs2w1cS0
3	Solve robot dynamics problems, generate joint trajectory for path	CO3	https://blogs.mathworks.com/studen lounge/2019/11/06/robot-manipulate trajectory/

	planning		
4	Describe working principle of various sensors and program different operations	CO4	https://sist.sathyabama.ac.in/sist_course material/uploads/SPR1304.pdf
5	Appreciate applications of robots in industry.	CO5	https://www.jabil.com/blog/ten-popular- industrial-robot-applications.html

# TEXT BOOK

1. Mikell P.Groover, Automation, Production Systems and Computer Integrated Manufacturing- Pearson Education.5/e, 2009.

2. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics — McGraw Hill, 1986

## **REFERENCES:**

1. S. R. Deb & Sankha Deb, Robotics Technology and Flexible Automation, Tata McGraw-Hill Education, 2009.

2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

3. Saeed B. Niku, Introduction to Robotics – Analysis, System, Applications, 2/e, John Wiley & Sons, 2010.

4. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988

# **Online Resources:**

1. https://www.youtube.com/watch?v=TxqPAPg4nb4

# Web Resources:

- 2. <u>https://www.youtube.com/watch?v=TxqPAPg4nb4</u>
- 3. https://www.youtube.com/watch?v=PjsZGn4B6cw
- 4. https://www.youtube.com/watch?v=mZ-OLcvlLCU

NARAYANA ENGINEERING COLLEGE:NELLORE											
		AUTOMOBILE ENGINEERING R2020									
Semester	Hours / Week Total Credit M				Max Mar	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
VII	3	0	0	48	3	40	60	100			
Pre-Requ	isite: Bas	ics in The	ermal Eng	ineering							
Course O	bjectives:										
1. To unde	rstand the	working c	of automob	ile compo	nents						
2. To illust	rate the pr	inciple of	ignition sy	stem							
3. To gain	the knowle	edge on st	eering and	suspensio	n system						
4. To stud	y construct	ion of wh	eel and dif	ferent bra	ke system						
5 To unde	rstand the	working c	of Automo	bile Electi	rical syster	n					
Course Ou	tcomes: A	fter succes	ssful comp	letion of th	ne course, t	he student	will be abl	e to:			
CO 1	Illustrate	the worki	ng of auto	mobile co	mponents	(BTL-2)					
CO 2	Demonstr	ate the w	orking of d	ifferent ig	nition and	fuel system	ms (BTL-2	2)			
CO 3	Identify the	he princip	le of steeri	ng geome	try and wh	eel alignm	ent.(BT L	.3)			
CO 4	Predict the	possible f	ailures in th	e braking s	systems.(B7	- L5)					
CO 5	Identify M (BTL-3)	Aodern te	chnology a	nd safety	measures ı	ised in Au	tomotive V	Vehicles.			

	CO-PO Mapping													
CO		PO										PSO		
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	2											3	
CO2	3	1											3	
CO3	3	1											3	
CO4	2	1											3	
CO5	2	1											3	
					1: Lo	w, 2-M	Iedi	um, 3- H	igh					

		COURSE CONTENT					
	MODULE – 1	10 Hours					
Vehic Locat head - Valve	le construction - Chassis ion of engine- Cylinder - Cylinder liners - Pisto s. Lubrication system - 7	s and body - Specifications - Engi arrangement - Construction deta on – piston rings - Piston pin - Cor Types - Oil pumps -Filters. Crank	ine - Types - Construction - ils - Cylinder block - Cylinde necting rod - Crankshaft – ccase ventilation.				
At the	end of the Module 1, stu	idents will be able to:					
	1. Gain the knowledge	of engineering behind the construct	ction of vehicle structure.				
	2. Identify lubrication s	system in automobile.					
MODULE -2 Ignition and Fuel Supply 9 Hours							
	MODULE -2	Ignition and Fuel Supply	9 Hours				
	MODULE -2	Ignition and Fuel Supply Systems	9 Hours				
Ignitic systen Injecto	MODULE -2 on system - Coil and Mag n - Carburetor - Fuel pun or – Nozzle types - Elect	Ignition and Fuel Supply Systems gneto - Spark plug - Distributor – I nps - Fuel injection systems - Mon ronic Fuel Injection system (EFI) -	<b>9 Hours</b> Electronic ignition system - Fue to point and Multi point – Unit – GDI, MPFI, DTSI.				
Ignitic systen Injecto At the	MODULE -2 on system - Coil and Mag n - Carburetor - Fuel pun or – Nozzle types - Elect end of the Module 2, stu	Ignition and Fuel Supply Systems gneto - Spark plug - Distributor – I nps - Fuel injection systems - Mon ronic Fuel Injection system (EFI) -	9 Hours Electronic ignition system - Fue to point and Multi point – Unit – GDI, MPFI, DTSI.				
Ignitic systen Injecto At the 1.	MODULE -2 on system - Coil and Mag n - Carburetor - Fuel pun or – Nozzle types - Elect end of the Module 2, stu Explain the working o	Ignition and Fuel Supply Systems gneto - Spark plug - Distributor – I nps - Fuel injection systems - Mon ronic Fuel Injection system (EFI) - udents will be able to:	9 Hours Electronic ignition system - Fue o point and Multi point – Unit – GDI, MPFI, DTSI.				
Ignitic systen Injecto At the 1. 2.	MODULE -2 on system - Coil and Mag n - Carburetor - Fuel pun or – Nozzle types - Elect end of the Module 2, stu Explain the working o Understand in depth o	Ignition and Fuel Supply Systems gneto - Spark plug - Distributor – I nps - Fuel injection systems - Mon ronic Fuel Injection system (EFI) - udents will be able to: of Ignition system and types f Electronic Injection system.	<b>9 Hours</b> Electronic ignition system - Fue to point and Multi point – Unit – GDI, MPFI, DTSI.				
Ignitic systen Injecto At the 1. 2. 3.	MODULE -2 on system - Coil and Mag n - Carburetor - Fuel pun or – Nozzle types - Elect end of the Module 2, stu Explain the working o Understand in depth o Sketch Fuel injection	Ignition and Fuel Supply Systems gneto - Spark plug - Distributor – I nps - Fuel injection systems - Mon ronic Fuel Injection system (EFI) - udents will be able to: of Ignition system and types of Electronic Injection system. system	9 Hours Electronic ignition system - Fue o point and Multi point – Unit – GDI, MPFI, DTSI.				

Principle of steering - Steering Geometry and wheel alignment - Steering linkages – Steering gearboxes - Power steering - front axle - Suspension system - Independent and Solid axle – coil, leaf spring and air suspensions - torsion bar - shock absorbers.

At the end of the Module 3, students will be able to:

- 1. Gain the knowledge of science behind the steering system.
- 2. Identify the mechanisms behind the steering system.
- 3. Explain the working of suspension system

MODULE-4	Wheels, Tyres and Braking System	9 Hours
Wheels and Tyres - Construction Classification –Drum and Disc M Anti-lock Braking System(ABS).	- Type and specification - Tyre we echanical - Hydraulic and pneuma	ear and causes - Brakes - Needs – tic - Vacuum assist – Retarders –

At the end of the Module 4, students will be able to:

- 1. Understand engineering fundamentals of the Braking system
- 2. Explain the working of Anti-lock Braking System (ABS).

MODULE-5	Automobile Electrical	10 Hours
	Systems and Advances in	
	Automobile Engineering	

Battery-General electrical circuits- Active Suspension System (ASS) - Electronic Brake Distribution (EBD) – Electronic Stability Program(ESP), Traction Control System (TCS) -Global Positioning System (GPS), Hybrid vehicle, Fuel Cell.

At the end of the Module 5, students will be able to:

- 1. Gain knowledge on automobile electrical systems
- 2. Explain the working of electronic brake system
- 3. Understand the principle of fuel cell working

Total hours: 48 hours

Content beyond syllabus: 1. Biodiesel						
Self-Study: Contents to promote self Learning:						
	SN	Topic	CO	Reference		
	0					
	1	Vehicle Structure and Engine Components	CO1	http://www.rmkec.ac.in/tmp/mech/Contents/automobilee ngineering.pdf		
	2	Ignition and Fuel Supply Systems	CO2	http://ecoursesonline.iasri.res.in/mod/resource/view.php ?id=3788		
	3	Steering and Suspension System	CO3	https://wiregrass.libguides.com/c.php?g=1035978&p=75 30246		
4	Wheels, Tyres and	CO4	https://archive.nptel.ac.in/courses/107/106/107106088/			
---	--------------------	-----	--------------------------------------------------------			
	Braking System					
5	Automobile	CO5	https://archive.nptel.ac.in/courses/107/106/107106088/			
	Electrical Systems					
	and Advances in					
	Automobile					
	Engineering					

### Text Book(s):

- 1. Automobile Engineering Vol.1 & Vol.2, Kirpal Singh, Standard Publishers distributor.
- 2. Automobile Engineering, R.K.Rajput, Lakshmi Publication.

## **Reference Book(s):**

- 1.Automobile Engineering, Joseph Hidner.
- 2. Automobile Engineering, William Crouse, TMH, 10th edition, 2006.
- 3. Automobile Engineering, K.K.Ramalingam/Scitech Publication.

### Web Resources:

- 1. <u>https://www.youtube.com/watch?v=c3CalfdYZYw&list=PLpe3qgeJLpB2wAoaRSY9_yAeO</u> <u>t7u0LTNd</u>
- 2. <u>https://www.youtube.com/watch?v=PYje-</u> <u>4D76kc&list=PLpe3qgeJLpB2wAoaRSY9_yAeOt7u0LTNd&index=3</u>

	NA	RAYAN	A ENGINI	EERING	COLLEG	E: NELL	ORE					
		(	COMPOSI	ТЕ МАТ	ERIALS			R2020				
Semester	Total Credit Max Max											
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
VII	3	0	0	48	3	40	60	100				
Course O 1. To defin materials.	<b>bjectives:</b> le composi	te materia	l, classific	ation and o	characteris	tics of con	nposite					
2. To expla	ain micro i	nechanica	al analysis	of a lamin	a							
3. To apply	y the know	ledge of b	biaxial stree	ngth theor	ies in solvi	ng the pro	blem					
4. To unde	r the metal	matrix co	omposites	materials								
5. To expla	ain the mic	romecha	nics of Fail	ure of Un	idirectiona	l Lamina						
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	rse, the st	tudent wil	l be able to:				
CO 1	Define the .( <b>BTL-1</b> )	e compos	ite materia	l and chara	acteristics	of compos	ite materia	als				
CO 2	Explain r elastic mo	nicro mec oduli by R	chanical an Cule of mix	alysis of a ture( <b>B</b> 7	lamina an T <b>L-2</b> )	d evaluat	ion of the	four				
CO 3	Solve the	numerica	l problems	on Tsai-	Hill theory	r, Tsai, Wu	theory(	BT-3)				
CO 4	Explain a materials	bout Met (.( <b>BTL-</b> 2	tal Matrix ( 2)	Composite	s and rein	forcement	of					
CO 5	Explain tl	ne micron	nechanics of	of Failure	of Unidired	ctional La	mina .( <b>BT</b>	L-2)				

	CO-PO Mapping													
CO		PO										PSO		
	PO											PO	PSO	PSO
	1	2	3	4	5	6	C	8	9	10	11	12	1	2
							7							
CO1	3	3										2	2	
CO2	3	3										2	2	
CO3	3	3										2	2	
<b>CO4</b>	3	3										2	2	
CO5	3	3										2	2	
	1: Low, 2-Medium, 3- High													

	]	NARAJ	YANA	ENGINEE	RING	COLLEGE	:NELLORE		
				COM	POSITE	C MATERIA	ALS	R20	020
Semester	Hou	rs / We	ek	Total hrs	Credi	ts Max Mar	ks		
	L	Т	Р		С	CIE	SEE	TC	DTAL
VII	3	0	0	48	3	40	60	10	0
				COURSE	CONT	ENT			
MODULE-	Ι		IN	TRODUCT M	TON TO	O COMPOS	SITE		10 Hrs
Introduction T	o Co	mposite	Materi	als: Definitio	n, classif	ication and c	haracteristics of	con	nposite Materials
– fibrous com	posite	es, lamin	nated co	omposites, pa	rticulate	composites.	Applications: A	uton	nobile, Aircrafts.
missiles. Space	e har	rdware, 1	Electric	cal and elect	ronics, N	Iarine, recrea	tional and spor	rts e	quipment, future
potential of co	mpos	ites							
MODULE-	II			MICRO N	AECHA	NICAL AN LAMINA	ALYSIS OF	A	9 Hrs
Micro Mechanie	cal A	nalysis o	f a Lar	nina: Micro N	<i>A</i> echanic	al Analysis of	a Lamina: Intro	oduc	tion, Evaluation
of the four elast	ic mo	oduli by I	Rule of	mixture, Nu	merical p	roblems. Mac	ro Mechanics o	f a L	amina: Hooke's
law for differen	t type	s of mat	erials, 1	Number of el	astic con	stants, Two -	dimensional rela	ation	ship of
compliance and	stiffr	iess mati	rıx. Ho	oke's law for	two-dime	ensional angle	e lamina,		10 Hag
III				BIAAL	AL SIR	ENGIH			10 Hrs
Biaxial Strength	n The	ories Ma	ximum	stress theory	, Maxim	um strain theo	ory, Tsai-Hill th	eory	, Tsai, Wu
tensor theory, N	lumer	rical prob	olems.	Macro Mecha	nical An	alysis of Lam	inate Introducti	on, c	ode, Kirchoff
hypothesis, CL	Т, А,	B, and I	) matri	ces (Detailed	derivatio	on),			
MODULE- IV				META	L MAT	RIX COMI	POSITES		09 Hrs
Metal Matrix	K C	omposit	es: N	Metal Mati	rix Coi	nposites: F	Reinforcement	m	aterials, types,
characteristics	and	selectio	n base	metals sele	ction. N	eed for prod	uction MMC's	s and	l its application.
Fabrication Pr	oces	s For M	IMC's	: Powder n	netallurg	y technique	, liquid metall	lurg	y technique and
secondary pro	cessii	ng, spec	ial fab	rication tech	niques.				
MODULE-	V			FAILURE	THEO	RIES			10 Hrs
Failure Theori	es: N	Aicrome	echanio	es of Failure	e of Uni	directional I	Lamina, Aniso	trop	ic Strength and
Failure Theori	es, Ir	nportan	ce of S	Shear Streng	th, Choi	ce of Failure	Criteria, Exan	nple	s.
							Total Ho	ours	48 Hrs
TEXT BOOK	KS :								
1 . K.K. Chawla	ı, "Co	omposite	Mater	ials", Springe	r-Verlag	New York. (	1998),		
2. Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004.									
REFERENCI	ES:			-					
1.B.T. Astrom ' Gray, Miltz, "R	'Man eferei	ufacturin nce Bool	ng of Po c for Co	olymer Comp omposites Te	osites", C chnology	Chapman & H ", CRC press	all. , (1997), 1. . (1989),	Stua	rt M Lee, J. Ian
2. Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Francis. (2006),									

	NARA	YANA EN	IGINEEI	RING CC	LLEGE:	NELLO	RE			
		Desig	en of Mate	rial Handli	ng Equipn	nent		R2020		
Semester	SemesterHours / WeekTotalCreditMax Marl									
	L     T     P     hrs     C     CIE     SEE									
VI	3	0	0	48	3	40	60	100		
Course Ob	ojectives:									
1. To und	erstand about	material ha	ndling equ	uipment						
2 To evp	lain the design	of hoisting	Fauinme	ant likes. Y	Wire and	Hemn Roy	ne			
2. 10 exp	lani the design	i or noisting	s Equiplin	in inco.		nemp Roj	pe			
3. To clas	sify the differ	ent types of	conveyor	rs						
4 To und	derstand desig	n of Rucket	alavatore	. Loadina	and buck	at arrange	monte			
4. 10 und	leistanu uesig	II OI DUCKEI		s. Loaunig	and buck	et allange	ements			
5 To und	derstand the en	nvironment	al and hur	nan facto	rs in mate	rial handl	ing			
Course Out	tcomes: After s	uccessful co	ompletion	of the cour	se, the stud	lent will be	e able to:			
CO 1	Understand	motorial har	dling	inmont w	oulting nu	incinla in	datail (DT	ר די (כ די		
	Understand	naterial nar	ianng equ	inpinent w	orking pr	inciple in	detail.(BI	L-2)		
CO 2	CO 2 Explain the design of hoisting Equipment likes: Wire and Hemp Rope, Welded and roller									
chains.(BTL-2)										
CO 3	Classify diff	erent types	of Convey	yors and a	pplication	ns of Belt	Conveyor	S		
	(BTL-3)									
CO 4	Explain the	concept of l	oading an	d bucket a	arrangeme	ents.(BTL	-2)			
CO 5	Explain abou	it environme	ental and h	uman facto	ors in mate	rial handli	ng.(BTL-2	2)		

	CO-PO Mapping													
CO		РО											PSO	
	PO1 PO2 PO											PO	PSO1	PSO
			3	4	5	6	7	8	9	10	11	12		2
CO1	2	2										2	2	
CO2	2	2										2	2	
CO3	2	2										2	2	
CO4	2	2										2	2	
CO5	2	2										2	2	
					1: Lo	ow, 2-1	Mediu	m, 3- Hi	gh					

				NARAYAN COLL	A ENGINI EGE:GUD	EERING UR			
		Ν	ATE	RIALS HAN	DLING EQ	<b>UIPMENT</b>		R2020	
Semester	Hours	/ Week		Total hrs	Credits	Max Mark			
	L	Т	Р		С	CIE	SEE	TOTAL	
VI	3	0	0	48	3	40	60	100	

	COURSE CONTENT	
MODULE- I	INTRODUCTION	10Hrs
Introduction to materia	I handling Equipment, Detail classification of MHE, Application and t	heir
selection.		
MODULE- II	DESIGN OF HOISTS	09Hrs
Design of hoisting Equip	ment likes: Wire and Hemp Rope, Welded and roller chains. Design of ro	pes,
pulleys, Pulley systems, S	Sprockets and drums, Load handling attachments. Design of Hooks: forget	ł
hooks and eye hooks, Gir	der Design, Crane grabs, Grabbing attachments, Design of arresting gear	
MODULE- III	DESIGN OF CONVEYORS	9Hrs
Classification of Conve	yors, Design and applications of Belt Conveyors, Apron Conveyors an	d
Escalators Pneumatic Co	onveyors, Screw conveyors and vibratory conveyor	
MODULE- IV	DESIGN OF ELEVATORS	10Hrs
		101115
Design of Bucket eleva	tors: Loading and bucket arrangements, Cage elevators, Shaft way,	Guides,
counter weights.		
MODULE- V	SAFETY AND TRAINING	10 Hrs
Need, Environmental	and human factors in material handling, Safety Regulations	
	Total Hours	48 Hrs
TEXT BOOKS .	10441110415	40 1113
IEAI DOURS :	Equipments by Dydanks MID Dyklichers 1064	
• 1. Material Handling	Equipments by Rudenko, MIR Publishers 1964	
• 2.Alexandrov M., "I	Viaterials Handling Equipments", MIR Publishers, 1981	
REFERENCES:		
• 1. ASME, "Ma	aterials Handling Handbook", Wiley -Interscience, 1985	
• 2. Spivakovsy	A.O. and Dyachkov V K, "Conveying Machines", Volume I and II,	
MIRPublishers	s,1985	
• 3. Tech P S G,	"Design Data Book", Kalaikathir Achchagam, Coimbatore, 2003.	

		N	ARAY	ANA	ENG	INEEI	RING	COLI	LEGE:	NELI	LORE			
				E	NGINI	EERIN	G OPT	TIMIZ	ATIO	N				R2020
Semester		Hou	rs / We	eek		Tot	tal hrs	Cre	edit			Ma	x Marks	5
	L		Т		Р				С		CIE	2	SEE	TOTAL
VI	3		0		0		48		3		40		60	100
Course	hisotiw													
<ol> <li>To acquire knowledge on operations research modeling and essential tools for optimization</li> <li>To develop formulation skills in transportation models and finding solutions.</li> <li>To understand the concepts of Project Evaluation Review Technique and Critical Path Method in project management.</li> <li>To provide a systematic procedure for determining the optimal combination of decisions.</li> <li>To acquire knowledge on optimization techniques &amp; important algorithmic design paradigms and methods of analysis.</li> </ol>														
Cour	se Outc	omes:	: After	succe	essful fferent	comp	letion	of the	cours	e ,the	stude	nt wil	l be abl	e to:
	List & understand the different operations research modeling and essential tools for optimization.(BL- 1)													
CO2	Interp	ret the	e form	ulatior	ı skills	in trar	nsporta	tion m	odels a	and fir	iding s	olutio	ns.(BL-	3)
CO3	Discu	ss the	conce	pts of	Project	t Evalu	ation I	Review	v Tech	nique	and Cr	itical	Path Me	thod in
CO4	projec	et man	lageme	nt. (B	L-2)	forda					-1-:		desision	$(\mathbf{D}\mathbf{I},2)$
C04	Summ	ly a sy	the or	timiz	otion	ochni		ing the	e optin	algor	ithmio	docid		ligme and
005	metho	ds of	analys	sis.(B	L-2)	Centin	ques o		Jitani	aigor		uesię	ii parac	ingins and
					(	CO-PO	Марр	ing.						
СО					r	Р	0				r		Р	SO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
<u> </u>	1	2	<b>3</b>	<b>4</b>	<b>5</b>	6	/	8	9	10	11	12	1	2
CO1	2	2	1	1	1	_	_		_		_	1	2	
CO2	2	1	1	1	1	_	_	-	_		_	1		
CO4	2	1	1	1	1	_	_	-	_		-	1		
CO5	1	1	2	1	1	_	_	_	_	_	_	1	1	+
	2	T	2	Т	1.10	- N 2-N4	Iodium	2_ Ці	 σh	_				
COURSE CONTENT														
MODULE - 1LINEAR PROGRAMMING PROBLEM10h														
OR definition- Classification of Models -Types of Operations Research models, Linear Programming														
Problem Fo	rmulatic Degener	on, Gr acy, c	aphica convers	l Metl	nod, Si prima	implex 1 to du	Metho al and	od, Tw dual si	vo– Ph implex	ase Si metho	mplex od	Meth	od, Big	M Method
At the end of	f the M	odule	1 stud	ents u	vill be	able to			p.10/					
<ol> <li>Learn numerical methods of solving linear programming problems.</li> <li>Learn about the various optimization methods to slove problems.</li> </ol>														

3. Understand the various the theory and numerical methods needed to understand and solve the mathematical problems.

MODULE -2	TRANSPORTATION PROBLEM	9h

Transportation Problem – Formulation; Different Methods of Obtaining Initial Basic Feasible Solution-North-West Corner Rule, Least Cost Method, Vogel's Approximation Method; OptimalityTesting. Unbalanced Transportation Problem, Degenerate Problem; Assignment Problem – Formulation; Optimal Solution -Travelling Salesman problem. Sequencing -Assumptions-n-jobs-2 Machines model, n-jobs-3machines models & n jobs – m Machines models

At the end of the Module 2, students will be able to:

- 1. Learn how to minimize the total cost of transporting goods from the various supply origins to the different demand destinations.
- 2. Learn the northwest corner rule and the matrix minimum cost method.
- 3. Learn the sequencing of jobs.

MODULE-3	PERT & CPM	10h

PERT & CPM: Introduction to Project Management, Activities, Events, Predecessor Relationships, AOA Diagram, Early Start, Early Finish, Late Start & Late Finish Times, Earliest Occurrence and Latest Occurrence of the Event, Total Float, Free Float, Independent Float CPM- Deterministic Model- Critical Path, Crashing, Optimal Project Duration, Least Possible Project Duration PERT- Probabilistic Model-Various types of Activity Time Estimates, Standard Deviation and Variance of the Activities and Projects, and Probability of Completing the Project within scheduled time

At the end of the Module 3, students will be able to:

- 1. Construct a simple net work diagrams.
- 2. Analyze net works that have deterministic time.
- 3. Describe activity crashing "and solve simple problem.

<b>MODULE-4</b>	DYNAMIC PROGRAMMING & REPLACEMENT MODELS	10h

Dynamic Programming : Introduction – Bellman"s Principle of Optimality – Applications of Dynamic Programming- Capital Budgeting Problem – Shortest Path Problem – Solution of Linear Programming Problem by DP, cargo-loading problem, employment Smoothing

Replacement Models: Introduction –Types of Replacement Problem, Determination of Economic Life of an Asset, and Simple Probabilistic Model for Items which completely fail-Individual Replacement Model, Group Replacement Model

At the end of the Module 4, students will be able to:

1. Acquire knowledge on Bellman"s Principle of Optimality

2. Learn about the shortest path Problem.

3. Learn about the different replacement models.

**MODULE-5** 

## **OPTIMIZATION TECHNIQUES**

9h

Introduction to Optimization: Engineering application of Optimization – Statement of an Optimization problem - Optimal Problem formulation - Classification of Optimization problem. Optimum design concepts: Definition of Global and Local optima, Optimality criteria Optimization algorithms for solving unconstrained optimization problems – Gradient based method: Cauchy's steepest descent method, Newton's method, Conjugate gradient method

Heuristic Programming – Greedy Heuristic, Meta Heuristic – Tabu Search Algorithm, Simulated Annealing Algorithm, Genetic Algorithm, Application of Metaheuristics to Integer Linear Programs, Constraint Programming.

At the end of the Module 5, students will be able to:

- 1. Learn classical optimization techniques and numerical methods of optimization.
- 2. Know the basics of different evolutionary algorithms.
- 3. Learn how to solve unconstrained optimization problems.

Total hours: 48 hours

### Text Book(s):

- 1. Operation Research, J.K.Sharma, MacMilan, 5th edition, 2013.
- 2. Engineering Application Of Optimization, Ravichandran, K.M.Ragsdell, G.V.Reklaitis 2007
- 3. Engineering of Optimization BY SS RAO 2000

### **Reference Book(s):**

- 1. Operations Research by R Panneerselvam, PHI, 2nd edition, 2012.
- 2. Operations Research, Wagner, PHI Publications, 2ndedition. 2003
- 3. Prem Kumar Gupta "Introduction to Operations Research" S.Chand, 2012
- 4. Operations Research S.D Sharma 5th edition, 2011

### **Online Resources:**

https://www.sciencedirect.com/topics/computer-science/optimization-formulation

Web Resources:

- 1. <u>https://www.youtube.com/watch?v=xrGVe6gMRyk</u>
- 2. <u>https://www.youtube.com/watch?v=FiHRNzkMADo</u>
- 3. https://www.youtube.com/watch?v=Tm2HhqMu5Jg

### Content beyond syllabus:

1. Waiting Lines - Poisson arrivals and exponential service

### Self-Study:

Contents to promote self-Learning:

SN O	Торіс	СО	Reference
1	Classification of Models in OR	CO1	https://prinsli.com/classification-of-modelling-in- operations-research/

2	Travelling	CO2	https://www.javatpoint.com/travelling-sales-person-
	Salesman problem		problem
3	Deterministic Model	CO3	https://en.wikipedia.org/wiki/Deterministic_system
4	Simple Probabilistic	CO4	https://www.cs.toronto.edu/~rgrosse/courses/csc311_f
	Model		21/readings/Probabilistic%20Models.pdf
5	Cauchy's steepest	CO5	https://www.sciencedirect.com/topics/mathematics/steepest
	descent method		-descent-method

NARAYANA ENGINEERING COLLEGE:NELLORE														
	Finite Element Method         R2020           Samestan         Herris													
Semester	Ho	urs / W	rks											
	L	Ť	Р	hrs	С	TOTAL								
VII	3	0	0	0 48 3 40 60 100										
Course Objectives:														
The subject discretization for simple approach, functions. To learn temperatu	The subject should enable the students to learn the principles involved in discretization in finite element approach, form stiffness matrices and force vectors for simple elements, find the various approach followed in finite element approach, use the various elements for discretization and learn about shape functions. To learn the application of FEM to various structural problems incorporating													
Course O	utcomes	: After s	uccessfu	l comple	tion of th	ne course	e, the stu	dent will						
be able to	:			-										
CO 1	Solve co	mplex p	roblems	using FE	M.(BTL-6	<b>b</b> )								
CO 2	Formula (BTL-6)	ate isopa	rametric	element	s with di	fferent ir	regular b	oundaries						
CO 3	Impleme (BTL-3)	ent solut	ion techr	niques for	r higher o	order pro	blems in	practice.						
CO 4	Determi	ne the tl	nermal st	resses (E	BTL-3)									
CO 5	Apply co (BTL-3)	oncepts f	for model	ing of no	n-linear	materials	s and geo	ometry						

	CO-PO Mapping													
			PSO											
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3	3									2		
CO2			3	2								2		
CO3			3									2		
CO4			3	2								2		
CO5			3		3							2		
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT										
MODULE - I	INTRODUCTION TO FINITE ELEMENT METHODS	10 Hours									
Introduction to finite elem Stress and equilibrium, Stress- strain relations for equilibrium, Rayleigh-Ritz dimensional Problems: Fini- shape functions. Require Pascal's Triangle, Assemb- element equations, Treatmo	nent methods for solving fie Boundary conditions, Stra or 2D and 3D Elastic probl method, Formulation of Fini ite element modelling of ID ba ments for Convergence an oly of global stiffness matri- ent of boundary conditions, Q	eld problems, applications, in-Displacement relations, ems. Potential energy and te Element Equations. One ar elements coordinates and d Interpolation functions, ix and load vector. Finite Quadratic shape functions.									
At the end of the MODULE 1. To learn the bound 2. To study the 2D an	C-1, students will be able to ary condition d 3D elastic problems	):									
MODULE - II	1 D ANALYSIS OF TRUSSES AND BEAMS	10 Hours									
Analysis of trusses: Stiffnes Problems with maximum of Matrix and Load vector for 1 problems	s Matrix for 1D truss element three elements. Analysis of D beam element, Hermite s	nt, Stress Calculations and f beams: Element Stiffness shape functions and simple									
At the end of the MODULE 1. To learn the maximu 2. To calculations diffe	C-II, students will be able to am of three elements erent beams	):									
MODULE - III	2D ANALYSIS	10Hours									
Finite element modeling of triangles and treatment of be Finite element modeling of A with triangular elements.	inite element modeling of two dimensional stress analysis with constant strain ciangles and treatment of boundary conditions. Estimation of load Vector, Stresses. inite element modeling of Axi-symmetric solids subjected to axi-symmetric loading with triangular elements.										
At the end of the MODULE	Z-III, students will be able t	0:									
<ol> <li>To study modelin</li> <li>To learn triangula</li> </ol>	g of two dimensional stress a ar elements	nalysis									
MODULE - IV	QUADRILATERAL ELEMENTS & THERMAL ANALYSIS	10 Hours									

Quadrilateral Elements: Isoparametric, Sub parametric and Super parametric elements, Modelling of 4 noded and 8 noded quadrilateral elements and simple problems. Numerical Integration. Steady state heat transfer analysis: One dimensional analysis of composite slab and fin

At the end of the MODULE-IV, students will be able to:

1. To identify Isoparametric, Sub parametric

To learn One dimensional analysis of composite slab and fin

MODULE - V	DYNAMIC ANALYSIS	10 Hours

Analysis of a 1D uniform shaft subjected to torsion – Simple problems Dynamic analysis: Formulation of finite element model, element – mass matrices, evaluation of Eigen values and Eigen vectors for a bar and shaft.

At the end of the Module 5, students will be able to:

1. To study the heat transfer and fluid mechanics by using the finite element method

Total hours: 50

hours

## Content beyond syllabus:

# 1. To learn about finite element analysis in fluid machines and heat transfer

Self-Study:

Contents to promote self-Learning:

SN	Торіс	СО	Reference
Ο			
1	Solve complex	CO1	https://www.iist.ac.in/sites/default
	problems using FEM.		/files/people/IN08026/FEM.pdf
2	Formulate	CO2	https://sist.sathyabama.ac.in/sist_c
	isoparametric		oursematerial/uploads/SMEA1503.p
	elements with different		df
	irregular boundaries.		
3	Implement solution	CO3	https://nptel.ac.in/courses/106104
	techniques for higher		<u>189</u>
	order problems in		
	practice.		
4	Apply concepts for	CO4	https://en.wikipedia.org/wiki/Finite
	carrying out research		_element_method
5	Apply concepts for	CO5	https://www.youtube.com/watch?v=Zljf
	modeling of non-linear		Z70toyY
	materials and		
	geometry		

**EXT BOOKS:** 1. T. Chandraputla, Ashok Belegundu, Introduction to Finite Element in Engineering, Pearson Publica 4/e, 2011.

2. S.S.Rao, The Finite Element Methods in Engineering, Elsevier Butterworth - Heinemann, 2/e, 2011. 3. S.Md.Jalaludeen, Finite Element Analysis in Engineering, 2/e, Anuradha Publications, 2016.

**REFERENCES:** 1. J N Reddy, An introduction to the Finite Element Method, McGraw – Hill, New York, 1993.

2. R D Cook, D S Malkus and M E Plesha, Concepts and Applications of Finite Element Analysis, 3/e, John Wiley, New York, 1989.

3. K J Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, 1982.

4. G.Lakshmi Narasaiah, Finite Element Analysis, 1/e, B.S. Publications, 2008.

5. O C Zienkiewicz and R L Taylor, the Finite Element Method, 3/e. McGraw-Hill, 1989

## Web Resources:

learning-modules-for-finite-element-method-on-the-world-wide-web.pdf

	TN	ARAYAN	A ENGIN	EERING	COLLEC	<b>GE:NELL</b>	ORE							
		FLE	XIBLE MAN	IUFACTURI	NG SYSTEM	15		R2020						
Semester	Н	Max Mar	ks											
	L	Т	Р	hrs	С	C         CIE         SEE         TO           3         40         60         1								
OE	3	0	0	48	3	40	60	100						
Course O	1. To Examine the basic concepts on design and modes of manufacturing systems.													
1. To Examine the basic concepts on design and modes of manufacturing systems.														
2.To Discu	2. To  Discuss the scheduling and controlling methods used in manufacturing systems.													
3. To the c	3. To the concepts of Group Technology to the development of FMS.													
4. To Analy	4 To Analyze and control the software components of EMS													
5 To Sum	narize the	concepts o	f modern tr	ends and a	pplications	of FMS.								
Course Ou	tcomes: Af	ter succes	sful compl	etion of th	e course, t	he student	will be ab	le to:						
CO 1														
	Understa	nd the ba	sic concep	ts of desig	n procedu	res and m	odes of							
	manufact	curing syst	ems.(BIL-	1)										
CO 2	Understa	nd the co	ncepts of c	leveloping	the manu	facturing	systems.(E	3TL-2)						
CO 3	Acquire t	he knowle	edge on fo	rmulation	of Group	Technolog	y and its							
	applicatio	ons.(BTL-3	)											
CO 4	Understa	nd the	concepts	of comp	uter conti	rolling sys	stems and	ł						
	software	for flexibl	e manufac	turing sys	tems.(BTL-	4)								
CO 5	Understa	nd concep	ts of mode	rn trends ai	nd applicati	ons of FMS	(BL5)							

	CO-PO Mapping													
СО		PO PSO												
	PO											PO	PSO	PSO
	1	1 2 3 4 5 6 0 8 9 10 11 1												2
							7							
CO1	3	1												2
CO2	2		2									1		
CO3	1	2	1											
CO4	2	1	1		2				2				1	1
CO5	2			1	2							1		
	1: Low. 2-Medium. 3- High													

		NARA	YANA EN	GINEERI	NG COLL	EGE: NE	LLORE					
			FLEXIBI	LE MANU	FACTURI	NG SYST	TEMS	R2020				
Semester	H	lours /	Week	Total	Credit		Max	Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
V	3	0	0	48	3	40	60	100				
				COURSE	CONTENT							
MODULE	- 1				INTRODU	CTION		10 Hours				
Introduction	n: Definiti	ons of	manufacturi	ng with in	put-output n	odel, defi	nition of sys	stem, basic problems				
concerning s	systems a	nd syst	em design p	rocedure, r	nodes of ma	nufacturin	g – job/batc	h/flow and multiproduct,				
small batch	manufactu	uring F	Flexibility an	d Types of	Flexibility		0	<b>1</b>				
MODULE	_?		SCHEDU	ING AND	CONTRO	L OF FL	FXIBLE	08 Hours				
MODULE			M	ANUFAC	TURING S	YSTEMS		00 110013				
:Developme	nt of Mar	nufactu	ring System	s – Benefit	ts – Major H	Elements –	-Single Pro	oduct, Single Batch, N -				
Batch Sched	uling Pro	blem –	- Knowledge	Based Sc	heduling Sy	stem.						
MODULE	_3			CROUP	TECHNOI	OCV		10 Hours				
	MODULE-3 GROUP TECHNOLOGY 10 Hours											
:: Introduction	on – Matri	x Form	ulation – Ma	athematical	l Programmi	ng Formul	ation –Grap	h Formulation –				
Knowledge	Based Sys	stem fo	or Group Tec	- 	Economic	Justificatio	on Of FMS-	Application of Possibility				
Distributions	s in FMS	System	ns Justification	on.								
MODULE	-4		COMPLITE	RCONT	ROL OF FI	EXIBLE		10 Hours				
			MANUFAC	TURING	SYSTEMS	:						
I			-f TMC 1	·1	6							
	– compo	Sition Same		ierarchy 0	r computer	tion of a	computer co	model of EMS simulation				
assembly in	ies – FM	s supe	ervisory con	iputer cont	rol, Applica	ation of si	mulation –	model of FMS- simulation				
software												
MODULE	-5		APPLICA	TIONS &	& FUTURE	TREND	S OF FMS	10 Hours				
FMS Applic	ation in N	Machin	ing, Sheet N	Ietal Fabric	cation, Prism	atic Com	oonent Prod	luction – Aerospace				
Application	– FMS De	evelop	nent Toward	ls Factories	s of The Fut	ure – Artif	icial Intellig	gence and Expert				
Systems in 1	FMS – De	esign P	hilosophy a	nd Charact	eristics for I	^F uture.	· · · ·					
		0										
							To	otal hours: 48 hours				
Text Book	(s):		<b>a u c</b>									
<b>1.</b> Jha, N.K <b>2</b> Raouf	$\Delta$ and $B_{2}$	ook of n-Dave	flexible mai	ufacturing "Flevibl	systems", 2 e manufactu	Academic	Press Inc.,	1991 development" Elsevier				
Science	1995	n-Daya	i, ivi., L'unoi	5, TICAIUI		ing syste						
Science,	-//0											

**Reference Book(s):** 1. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International

Ltd., 1994.

		NARAY	ANA ENG	INEERING	COLLEGE:	NELLORE							
		GAS TURBINES AND JET PROPULSION R2020											
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
OE	3	0	0	48	3	40	60	100					
	Course Objectives:												
<ol> <li>Course O</li> <li>To Acquiand its efficiency</li> <li>To Describility</li> <li>To Evalution</li> <li>To Identify</li> <li>To Explain</li> </ol>	<ol> <li>To Acquire knowledge about the gas turbine cycles, classification, working Principles and its efficiencies.</li> <li>To Describe the different operating modes for gas turbines.</li> <li>To Evaluate, enumerate, and resolve problems of jet propulsion</li> <li>To Identify the essential principles, uses, and workings of rocket and Ram engines.</li> <li>To Explain the functionalities of different components of Rocket Technology.</li> </ol>												
Course Out	tcomes: Af	ter succes	sful compl	etion of th	e course, t	he student	will be ab	le to:					
CO 1	Explain th	e basic fun	damentals	of the vario	ous gas turb	ine operati	ing cycles.(	BTL-1)					
CO 2	Discuss th	ie various r	modes pert	aining to ga	as turbines.	(BTL-2)							
CO 3	Identify, f	formulate a	and solve p	roblems rel	ated to jet	propulsion	. (BTL-3)						
CO 4	Understar	nd the basio	c fundamen	tals, applic	ations and	operations	of Ram						
	jet and Ro	cket engin	es. (BTL-4)										
CO 5	Illustrate t	he differer	nt compone	nts and its	functions o	f Rocket Te	echnology.(	BTL-5)					

	CO-PO Mapping													
СО		PO PSO												
	PO											PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	1												2
CO2	2		2									1		
CO3	1	2	1											
CO4	2	1	1		2				2				1	1
CO5	2			1	2							1		
					1: Lo	w, 2-N	ledi	ium, 3- Hi	gh					

		NARA	YANA EN	IGINEERI	ING COL	LEGE: NE	LLORE			
			GAS TU	RBINES A	AND JET	PROPULS	ION	R2020		
Semester	H	Iours /	Week	Total	Credit		Max	Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOT	TAL	
V	3	0	0	48	3	40	60	10	00	
				COURSE	CONTEN	Г				
MOI	DULE – 1	L			INTROD	UCTION			09 Hours	
Gas Turbin deviation fro regenerator,	<b>Gas Turbines;</b> gas turbine applications, gas turbine advantages & disadvantages, energy flow & back work, deviation from ideal cycle, gas turbine with regeneration, thermal efficiency of gas turbine with & without regenerator, gas turbine engines, inter cooling & reheating, turbojet engine, turbofan engine, turboprop engine									
МО	DULE -2	2	0	PERATINO	G CYCLE	1		1	0 Hours	
. Simple op cycle work i and the spec	. Simple open cycle gas turbine or air standard Brayton cycle, Actual Brayton cycle, the cycle air flow rate, the cycle work ratio, optimum pressure ratio or maximum cycle thermal efficiency, means of improving the efficiency and the specific output of simple cycle.									
MO	DULE-3				JET PROI	PULSION		1	0 Hours	
applications operation – propeller pla	. Turbopro performar ant.	op and t ice eval	urbojet – th uation – th	ermodynan rust augmer	nic cycles, j	plant layout, Thrust reve	, essential c ersal – cor	components, ntrasting wit	and principles of th piston engine	
MO	DDULE-4			RAM JET	AND RO	CKET EN	GINES	1	10 Hours	
Ram jet- T evaluation– Rocket Er classification comparison MC Rocket Tec feed systems	Ram jet- Thermo dynamic cycle, plant lay out, essential components – principle of operation – performance evaluation– comparison among atmospheric thermal jet enginesRocket Engines: Need for applications- basic principle of operation and parameters of performance – classification, solid and liquid propellant rocket engines, advantages, domains of application – propellants – comparison of propulsion systems.MODULE – 5ROCKET TECHNOLOGY09 HoursRocket Technology: Flight mechanics, application thrust profiles, acceleration staging of rockets, need for –									
	Total hours: 48 hou							48 hours		
Text Book( 1. Gas Turbi 2. Gas turbin Reference 1. Thermody 2. Rocket Ph 3. Element of	s): ines , V. nes , cohe Book(s): ynamics co ropulsion of Gas Tu	Ganesai n , Rog of propu , Suttor rbines j	n TMGH 2 ers & Sarv Ision, Hill n.2010 propulsion	006 ana Muttoo & Paterson , Jack D M	, Addision .2009 atingly, MQ	Wiley & lo	ongman 20 Matingly, M	017 ИGH1996		

NARAYANA ENGINEERING COLLEGE:NELLORE								
		HYDRA	AULIC &	PNEUMA	TICS SY	STEMS		R2020
Semester	H	ours / Wee	ek	Total	Credit		·ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
Pre-Requisite: BASICS IN HYDRAULICS & PNEUMATICS								
Course O	bjectives:							
1. To unde	1. To understand various properties of fluids and basics of hydraulics							
2. To define the purpose of Actuator								
3. To ident	ify the wo	rking of h	ydraulic ci	rcuits				
4. To unde	erstand the	working o	of compres	ssors				
5 To descr	ribe the tro	uble shoo	ting and re	medies in	Hydraulic	and Pneu	matic syste	ems
Course Ou	itcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	e to:
CO 1	Calculate	the fluid	properties	and flow c	haracteris	tics (BTL-	3)	
CO 2	Explain the	he workin	g of hydra	ulic actuat	or (BTL-2	)		
CO 3	Calculate	the flow of	of fluid in	hydraulic	circuits (B	TL-3)		
CO 4	Solve the problems on Pneumatic system (BTL-3)							
CO 5	Illustrate o	lifferent ap	plications of	of hydrauli	c and pneur	natic syster	$m(\overline{BTL-4})$	

	CO-PO Mapping													
CO		PŌ											PSO	
	PO	PO	PO	PO	PO	PO	Р	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	1											3	
CO2	3	2											3	
CO3	3	2											3	
CO4	3	2		2									3	
CO5	3	2		2									3	
	1: Low, 2-Medium, 3- High													

## **COURSE CONTENT**

MODULE – 1	Fluid Power Principles and	10 Hours
	Hydraulic Pumps	

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids – Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow – Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

At the end of the Module 1, students will be able to:

- 1. Understand the properties of fluids
- 2. Learn principles of fluid flow
- 3. Solve the problem on fluid flow

MODULE -2	Hydraulic Actuators and	9 Hours
	<b>Control Components</b>	

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Hydraulic motors – Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Servo and Proportional valves – Applications – Accessories : Reservoirs, Pressure Switches – Applications – Fluid Power ANSI Symbols – Problems

At the end of the Module 2, students will be able to:

- 1. Gain knowledge on hydraulic actuators
- 2. Explain the construction and Operation of flow and pressure control valve
- 3. Solve the problems on hydraulic motors

MODULE-3	Hydraulic Circuits and	10 Hours
	Systems	

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double- Pump,

Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

At the end of the Module 3, students will be able to:

- 1. Understand the working of industrial circuits
- 2. Describe the pressure intensifier working

MODULE-4	Pneumatic and Electro Pneumatic Systems	9 Hours
Properties of air – Perfect Gas L control Valves, Quick Exhaust Cascade method – Electro Pre Introduction to fluidics and pneu	Laws – Compressor – Filters, Reg Valves, Pneumatic actuators, eumatic System – Elements – umatic logic circuits.	gulator, Lubricator, Muffler, Air Design of Pneumatic circuit – Ladder diagram – Problems,
At the end of the Module 4, stud	ents will be able to:	
1. Understand properties of	air and working of Pneumatic ad	ctuators
2. Explain about Cascade m	nethod and Electro Pneumatic Sy	vstem
MODULE-5	Trouble Shooting and	10 Hours
	Applications	
Installation, Selection, Maintena Pneumatic systems, Design of hy grinding, Press and Forklift appl applications and tool handling in	nce, Trouble Shooting and Reme ydraulic circuits for Drilling, Plat ications. Design of Pneumatic ci of CNC Machine tools .	edies in Hydraulic and nning, Shaping, Surface rcuits for Pick and Place
At the end of the Module 5, stud	ents will be able to:	
1. List the applications	of Hydraulic and Pneumatic Syst	tem
2. Explain the working	of Press and Forklift	
		Total hours: 48 hours

1. Ci	reating awareness or	n different ele	ements of mini hydro power plant
ontent	<b>y:</b> s to promote self-I	earning.	
SN	Topic	CO	Reference
0			
1	Basics of	CO1	https://www.grc.nasa.gov/www/k-
	Hydraulics		12/WindTunnel/Activities/Pascals_principle.html
2	Hvdraulic	CO2	https://www.electricalvolt.com/2022/02/hydraulic-
	Actuators:		actuator-its-parts-types-working-advantages/
	Cylinders –		

3	Intensifiers,	CO3	https://www.powermotiontech.com/technologies/other-
	Industrial hydraulic		technologies/article/21884328/book-2-chapter-13-
	circuits		pressure-intensifier-circuits
4	Design of	CO4	https://www.clippard.com/cms/wiki/how-design-
	Pneumatic circuit		efficient-pneumatic-systems
5	Trouble Shooting	CO5	https://nptel.ac.in/courses/112105046
	Hydraulic and		
	Pneumatic systems		

### Text Book(s):

- 1. Hydraulic and Pneumatic Control by K Shammuga Sundaram, S. Chand & Co. Ltd., New Delhi 2006
- 2. Hydraulics and Hydraulic Machinery by Dr. Jagadish Lal; Metropolitan Book Company Ltd., Delhi. 1994
- 3. Hydraulic and Pneumatic Power and Control Design, Performance and Application by Yeaple, McGraw Hill, New York.1996

### **Reference Book(s):**

- 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.
- 2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw- Hill, 2001.

### **Online Resources:**

### Web Resources:

- 1. <u>https://www.youtube.com/watch?v=PgKsr2_-oxc</u>
- 2. <u>https://www.youtube.com/watch?v=QRcZHnuC-us</u>

NARAYANA ENGINEERING COLLEGE:GUDUR										
			Industri	al Engine	ering			R2020		
Semester	Н	ours / We	ek	Total	Credit		Max Mar	٢S		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
OE	3	0	0	48	3	40	60	100		
Course O	bjectives:									
1. To org	Illustrate anization.	the fun	damental	concepts	of mana	agement	administra	tion and		
2. To pro	study the s duces.	systemati	c method o	of improvi	ng the val	ue of a pro	oduct that	a project		
3. То	improve th	ne design	and condit	ion of the	workspace	e by using	method st	tudy.		
4. To am	4. To know sound Inventory Management techniques by maintaining the optimal amount of inventory to meet customer demand									
5 To	collect inf	formation	regarding	the nerfo	rmance of	the produ	ict with e	stahlished		
sta	ndards for	the use of	fengineeri	ng product	tion, purch	asing and	quality cor	ntrol etc.		
			-			-				
Course Ou	tcomes: Af	ter succes	sful compl	etion of th	e course, t	he student	will be ab	le to:		
CO 1	Explain th	ne core ide	eas in man	agement, a	administra	tion, and o	organizatio	on. (BTL-1)		
CO 2	Evaluate	the systen	natic appro	bach of inc	reasing the	e value of a	a product.	(BTL-6)		
CO 3	Apply me	thod stud	y to enhan	ce the layo	out and co	ndition of	the			
	workspac	e. (BTL-3)								
CO 4	Evaluate	the right a	mount of	inventory	on hand to	satisfy co	nsumer de	emand.		
	(BTL-1)									
CO 5	Defined s	tandards	for the use	of engine	ering prod	uction, pu	rchasing a	nd quality		
	control etc. (BTL-1)									

	CO-PO Mapping													
СО		РО										PSO		
	РО	PO	PO	PO	PO	РО	PO	PO	РО	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													1
CO2		1										1		1
CO3				2										
CO4	1	2											2	1
CO5				1								1		
CO6	2	3												
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT	
MODULE – 1	INTRODUCTION	10 Hours
Concepts of Manager Taylor's Scientific Ma Theory X and Y, Hertz needs – Organization Organization	nent-Administration and Organization – Functions nagement, Fayol's Principles of Management, Do berg's Two factor Theory of Motivation, Maslow's H al Structures Functional- virtual - Matrix Basic Co	of Management – ouglas Mc-Gregor's Herarchy of Human oncepts Related to
MODULE -2	Plant location AND PLANT LAYOUT	10 Hours
Plant Location : Object Comparative Study of of Good layout, Princip	ctives, Product Life Cycle, – Factor Considerations Rural and Urban Sites, Methods of Selection of Plant les, Types of Layout, Line Balancing.	in Plant Location, t Layout, Objectives
MODULE-3	WORK STUDY	10 Hours
- Definition, Objective Work Measurement - of Performance Rating Steps Involved,	s, Method Study – Steps Involved – Various Types o Definition, Time Study, Steps involved - Equipment, g - Allowances, Standard Time Calculation. Work Sa	of Process Charts –. , Different Methods mpling - Definition,
MODULE-4	INVENTORY MODELS	9 Hours
Deterministic models- with Price Breaks -Pro Control Systems	EOQ Models – With and Without Shortages Models obabilistic Models –Discrete Variable, Continuous	s; Inventory Models Variable. Inventory
MODULE-5	INSPECTION & QUALITY CONTROL	9 Hours
Inspection & Quality C Control Charts: X and Sampling and Double S	ontrol: Statistical Quality Control- Techniques-Varial R Charts; P Charts and C Charts. Acceptance San ampling Plans- OC Curves. Introduction to TQM- Qua	bles and Attributes- pling Plan - Single ality circles
	Tota	1 nours: 48 nours

## Text Book(s):

- 1. Industrial Engineering And Management By OP Khanna
- 2. Introduction to industrial Engineering, Bonnie Boardman , Mays open press 2020.

### **References:**

- 1. Industrial Engineering and management by Rhona, Free sage publications 2012
- 2. Chary S.N., Production and Operations Management, 5 th Edition, McGraw Hill Education, 2017.

NARAYANA ENGINEERING COLLEGE:NELLORE												
		I	NDUSTRIA		GEMENT			R2020				
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
OE	3	0	0	48	3	40	60	100				
<ul> <li>Course Objectives:</li> <li>1. to understand the Basic management .</li> <li>2. to understand strategic management.</li> <li>3. to understand statistics in quality control and management.</li> <li>4. to understand human resource development.</li> <li>5 to understand management information systems .</li> <li>Course Outcomes: After successful completion of the course, the student will be able to:</li> </ul>												
CO 1	<mark>know the</mark>	concept o	of Basic m	anagemer	nt and Leve	els of man	agement (	<mark>BTL-1)</mark>				
CO 2	<mark>know st</mark> ı	rategic ma	inagement	<mark>t.(BTL-2)</mark>								
CO 3	Apply the	statistics ir	n quality cor	ntrol and m	nanagemen	t. (BTL-2)						
CO 4	<mark>understa</mark> i	nd the ob	jectives of I	HRM .(BTI	<mark>2)</mark>							
CO 5	<mark>understa</mark> i	nd manage	ment infor	mation syst	tems.(BTL3	)						

	CO-PO Mapping														
СО						Р	0						PS	50	
	PO	PO	РО	РО	PO	РО	Ρ	РО	PO	РО	PO	PO	PSO	PSO	
	1	1 2 3 4 5 6 <mark>0</mark> 8 9 10 11 12 1 2													
CO1	2														
CO2	1				3						1	1			
CO3	2			1								1			
CO4	2	1		1					2		1		1	1	
CO5	3	3 2 1 1													
	1: Low, 2-Medium, 3- High														

NARAYANA ENGINEERING COLLEGE:GUDUR													
			IN	IDUSTRIAL	MANAGE	MENT		R2020					
Semester	Hours	/ Week		Totalhrs	Credits	Max Mark	S						
	L	Т	Р		С	CIE	SEE	TOTAL					
VII	3	0	0	48	3	40	60	100					
				COURSE	CONTEN	Γ							
MODULE- I				BASICS O	F MANA	<b>JEMENT</b>		10 Hrs					
Organising, Sta Principles of ma of management,	Drganising, Staffing, Directing, Co-ordination, Controlling, Motivating, Communication, Decision Making, Principles of management – F.W.Taylor, HenryFayol, Elton Mayo, Administration and management, Nature of management, levels of management, Forms of Organization- Line, Line –staff etc												
MODULE- I	[			STRATEG	IC MANA	GEMENT		9 Hrs					
Military origins	of str	ategy –	Evolut	ion - Concer	t and Cha	racteristics	of strategic m	nanagement –Defining					
strategy – Mint Management Pr	zberg's ocess.	s 5P's o Preparin	f strate g an Er	gy – Corporativironmental	ate, Busine Threat and	ss and Fur Opportunit	ctional Levels y Profile (ETO	of strategy - Strategic P)					
MODULE- I	Π			QUALITY	MANAG	EMENT		10 Hrs					
MODULE- I Strategic import competencies of process; human planning and ma	v circle v circle tance 1 f HR resour	HRM; o professio ce information from the formation of the	bjective onals; H nation s	HUMAN RE HUMAN RE so of HRM; IR department system Talent	2. Source challenges nt operation nt acquisition	<b>DEVELO</b> to HR pros; Human	PMENT ofessionals; role Resource Plan nent and selectio	9 Hrs e, Responsibilities and ning - objectives and on strategies, career					
MODULE- V	7	, ,	MANA	GEMENT I	NFORMA	TION SYS	STEMS	10 Hrs					
Concept of data Purpose and Ob study informatio	and in jective n syste	nformatic es, Conte ems,	on, char mporar	acteristics of y Approache	information es to MIS,	n, types of Componen	information, De ts of an informa	finition of MIS, Need, ation system, Need to					
							Total He	ours 48 Hrs					
<b>TEXT BOOKS</b> 1. P. Khanna, "I 2. L.C.Jhamb , S	: ndustri Savitri	al Engin Jhamb ,	eering Industr	and Managem ial Managem	nent", Dhar ent – I , Ev	npatrai publ erest Publi	lications Ltd, N shing House .20	ew Delhi. 1966 015					
REFERENCES 1. Din Sec 2. B. I Inte	<ul> <li>L.C.Jhamb , Savitri Jhamb , Industrial Management – I , Everest Publishing House .2015</li> <li><b>EFERENCES:</b> <ol> <li>Dinesh Seth and Subhash C. Rastogi, "Global Management Solutions", Cengage Learning, Second Edition, USA.2009</li> <li>B. Davis and Margrethe H. Olson, "Management Information Systems", Mc-Graw-Hill International Editions.1985</li> </ol></li></ul>												

NARAYANA ENGINEERING COLLEGE:NELLORE												
		INTELI	IGENT MA	NUFACTU	RING SYSTE	MS		R2020				
Semester	Ho	urs / We	eek	Total	Credit		Max Mar	rks				
	L	Т	Р	hrs	C	CIE	SEE	TOTAL				
VII	3	0	0	48	3	40	60	100				
Course Objectives: 1. Learn computer integrated manufacturing systems.												
<ol> <li>App</li> <li>Exp</li> <li>Exp</li> <li>Des</li> <li>Der</li> </ol>	bly the problem blain vario cribe the nonstrate	inciples o ous proce Group T e knowled	of artificia ess plann echnolog lge group	l intellige ing techn y based o technolo	ence in ma iques in i on knowle gy in auto	anufactur ntelligen dge base omated n	ring syste t manufac system nanufactu	em cturing aring				
Course O be able to	utcomes :	: After s	uccessfu	l comple	tion of th	e course	e, the stu	dent will				
CO 1	<mark>Assess t</mark>	he perfor	mance of	manufac	cturing sy	stems						
CO 2	Develop manufac	a syste cturing sy	ematic a <mark>/stems</mark>	<mark>pproach</mark>	for desi	<mark>gn and</mark>	impleme	<mark>entation of</mark>				
CO 3	Suggest manufac	new proc	cedures to <mark>/stems</mark>	o improve	the prod	uctivity o	of existing	5				
CO 4	Utilize o	nline coll	aboratior	n tools to	<mark>work in</mark> c	omplex to	eams					
CO 5	study th	e group t	echnolog	y								

	CO-PO Mapping														
	PO														
СО	PO	PO	PO	PO	PO	PSO	PSO								
	1	2     3     4     5     6     7     8     9     10     11     12     1     2													
<b>CO1</b>	3														
CO2	3			2			2								
CO3	3						2								
CO4	3			2			2								
CO5	CO5 2 2 2														
	1: Low, 2-Medium, 3- High														

COURSE CONTENT											
MODULE-I	COMPUTER INTEGRATED MANUFACTURING SYSTEM	S	10 Hrs								
Computer integrated manu of CIM system - AD, CA Manufacturing communica manufacturing – system co	afacturing systems – structur APP, CAM, CAQC, ASRS an ation systems – MAP/TOP mponents, system architectu	re and nd ad OSI 1 re and	d functional areas lvantages of CIM model, Intelligent d data flow,								
MODULE-II	ARTIFICIAL INTELLIGENCE	9 Hrs	5								
Components of knowledge based systems –Machine learning – concept of artificial ntelligence, conceptual learning, artificial neural networks -biological neuron, artificial neuron, types of neural networks, applications in manufacturing											
MODULE- III	PROCESS PLANNING	10 Hı	rs								
Automated process planning for process planning, feature Based System for Equipment equipment selection problem	– variant approach, generativ recognition, phases of procest Selection (KBSES) – Manufa ,	ve app ss plai cturin	broach, expert systems nning Knowledge ng system design,								
MODULE-IV	GROUP TECHNOLOGY	9 Hrs	5								
Group technology: models a analysis method, matrix fo algorithms, bond energy algo	nd algorithms – visual met ormation – similarity coeffic rithm,cost based method,	hod, d	coding method, cluster method, sorting-based								
MODULE-V	KNOWLEDGE BASED GROUP TECHNOLOGY	10 Hı	rs								
Knowledge based group tech system, structure of knowled base, knowledge base, cluste	nology - group technology in ge based system for group te ring algorithm	autom chnolo	nated manufacturing ogy (KBSGT) – data								
		T	otal hours: 48 hours								

1-510			
onte SN O	<b>Topic</b>	ng: CO	Reference
1	Assess the performance of manufacturing systems	CO1	https://www.slideshare.net/Harshad aGurav/performance-measures-of- manufacturing-system
2	Develop a systematic approach for design and implementation of manufacturing systems	CO2	https://publications.lib.chalmers.se /records/fulltext/255133/255133.p df
3	Suggest new procedures to improve the productivity of existing manufacturing systems	CO3	https://www.slideshare.net/vishalba rasara3/production-and-productivity
4	Utilize online collaboration tools to work in complex teams	CO4	https://www.opensym.org/os2016/j roceedings-files/p601- chasanidou.pdf
5	To study the group technology	CO5	https://www.youtube.com/watch?v=y3- 5ENFtqrQ

### TEXTBOOKS :

- 1. Andre Kusaic, "Intelligent Manufacturing Systems", PHI,1989
- 2. Hamid R. Parsaei and Mohammad Jamshidi, "Design and Implementation of Intelligent Manufacturing Systems", PHI, 2009

## **REFERENCES:**

Γ

- 1. Mikell P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", 8th edition, PHI, 2008.
- 2. Yagna Narayana, "Artificial Neural Networks", PHI, 2009

## **Online Resources:**

https://www.youtube.com/watch?v=y3-5ENFtqrQ

NARAYANA ENGINEERING COLLEGE:NELLORE													
			MANAG	EMENT SC	ENCE			R2020					
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
V	3	0	0	48	3	40	60	100					
Course O 1. 2. 3. 4. 5. Course Ou	Course Objectives:       1. To understand the concept of management and Organization designs         2. To explain principle of operations management and types of plant layout         3. To develop an understanding of the human resource management nature         4. To explain about strategy formulation and Implementation         5. Gain knowledge on Management Information System         Course Outcomes: After successful completion of the course, the student will be able to:												
CO 1	Explain the designs	he importa	ance of ma	nagement	science an	d types of	organizati	ion					
CO 2	Illustrate a	bout operation	ations mana	gement and	d material n	nanagemen	t						
CO 3	Summariz	ze the hun	nan resour	ce manage	ment oper	ations and	process						
CO 4	Explain t	the SWOT	analysis a	and Projec	t managem	ent netwo	ork analysis	S					
CO 5	Define the Requirem	e concept ent Plann	of Manag ing	ement Info	ormation S	ystem and	Material	S					

CO-PO Mapping														
СО						Р	0						PS	<b>50</b>
	РО	PO	PO	PO	PO	РО	Ρ	PO	PO	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1		2						2					
CO2	1	2		1								1		
CO3		1	1						1					
CO4	1	1								1				
CO5												1		
CO6		2	1	1								1		
					1: Lov	w, 2-M	lediu	m, 3- Hi	gh					

		NAR	AYAN	A ENGINEE	RING CO	LLEGE: N	NELLORE					
				MANAGEM	IENT SCI	ENCE		R2020				
Semester	Hour	s / Week		Totalhrs	Credits	Max Mark	CS CTET	moment				
<b>X</b> 7	L	T	P	40	C	CIE	SEE	TOTAL				
V	3	0	0	48	3	40	60	100				
MODILE	r		TNT		KSE CONI			10.11				
MODULE-		. 1	. IN .			ANAGEM		10 Hrs				
f Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations Systems Theory - <b>Organisational Designs</b> - Line organization - Line & Staff Organization - Functiona Drganization - Matrix Organization - Project Organization - Committee form of Organization												
MODULE- IIOPERATIONS MANAGEMENT9 Hrs												
Principles and	Types	of Plan	t Lavou	t - Methods	of Producti	on (Job b	atch and Mass	Production) Materia				
Management · Purchase Proce	<b>Tanagement</b> - Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - urchase Procedure and Stores Management - Product Life Cycle.											
MODULE-	III	I	HUMA	N RESOURC	ES MAN	AGEMEN	Γ (HRM)	10 Hrs				
HRM - Definiti	on and	Meaning	g – Natu	ire - Manageria	al and Oper	ative funct	ions - Evolution	of HRM - Job				
Analysis - Hun	nan Re	source P	lanning	(HRP) - Empl	oyee Recru	itment-Sou	rces of Recruit	nent - Employee				
Selection - Pro	cess ar	nd Tests	in Emp	loyee Selectio	on - Emplo	yee Trainii	ng and Develop	nent - On-the- job &				
Off-the-job training methods -												
MODULE-			STRA	TEGIC & P	ROJECT	MANAGE	MENT	9 Hrs				
Definition& M	eaning	- Settir	ng of V	ision - Missi	on - Goals	- Corpora	ate Planning Pro	cess - Environment				
Scanning - Ste	ps in	Strategy	Formu	lation and Im	plementation	n - SWO	I Analysis - $\mathbf{P}$	roject Management				
Identifying Cri	tical P	Program ath - Sim	ime Eva iple pro	blems.	Keview 16	chnique (I	PERT) - Critica	I Path Method (CPM				
MODULE-	V	(	CONTE	MPORARY	ISSUES I	N MANA(	GEMENT	10 Hrs				
The concept of	f Mana	agement	Inform	ation System(	MIS) - Ma	aterials Re	uirement Plann	uing (MRP) Tota				
Quality Manag Management -	ement Busine	(TQM) ess Proce	- Six ess Outs	Sigma Conce ourcing (BPO	ept - Ente )) - Busines	rprise Reso ss Process	Durce Planning Re-engineering	(ERP) - Performanc and Bench Marking -				
							Total Hou	rs 48 Hrs				
<b>TEXT BOOK</b> 1. A.R Aryasri, 2. Kumar/Rao/O	"Man Chhalil	agement I 'Introd	Scienc	e", TMH, 201 to Managemer	13 nt Science'	Cengage,	Delhi, 2012.					
REFERENCE	S:											
1. Koontz &Wo	eihrich	, "Essen	tials of	Management"	', 6 th edition	n, TMH, 2	005.					
2 Kanishka B	edi, "P	roduction	n and C	perations Ma	nagement",	Oxford U	niversity Press,	2004.				
3. Samuel C.Ce	erto, "I	Modern I	Manager	ment", 9 th edit	tion, PHI, 2	2005						

3. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

NARAYANA ENGINEERING COLLEGE:NELLORE													
		Manufa	cturing	& Inspec	tion of G	ears		R2020					
Semester	Ho	urs / We	eek	Total	Credit		Max Ma	rks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
VII	3	0	0	48	3	40	60	100					
Course O	bjective	es:											
1. To I	dentify	methods	s of mai	nufactur	ing exte	rnal and	d interna	al spur,					
sing	single and double helical, and bevel and worm gears												
2. To	Describe	e the r	nethodol	logy and	d under	lying tł	neory fo	r basic					
mar	ufactur	e and in	spection	of each.									
3. To	Discuss	the "f	eatures"	associa	ated wit	h each	manufa	acturing					
met	hod .												
4. To d	letermin	e accept	ability fo	or a spec	ific appl	ication,	and inter	rpreting					
the	inspecti	on data	a for pu	irposes	other th	an sim	ply dete	rmining					
	ept/rejec	t status		d to com	tenal hath	+100 m00	aufo otur	ing and					
5. 10 inor	Specily i	ne uata	required	u to con	ing drow	ine ma	nulactul	ing and					
		$\mathbf{e} \cdot \Delta \mathbf{ft} \mathbf{e} \mathbf{r}$		ful com	nletion	of the o	ourse th						
student w	vill be at	<b>s</b> . Alter	succes	siur com	ipicuon		ourse, n	IC					
Student w	in be at												
<b>CO</b> 1	<mark>To deve</mark>	lop the o	different	types of	<mark>gears (</mark> B	TL-3)							
CO 2	<mark>To desc</mark>	ribe the	applicat	tions of l	nelical ar	nd bevel	gears (B	TL-2)					
CO 3	<mark>To finis</mark>	<mark>h the ge</mark>	<mark>ars by h</mark>	obbling	(BTL-4)								
CO 4	To learr	<mark>i the</mark> qu	ality star	ndards to	oth thick	ness (BT	L-2)						
CO 5	To learr	n the pro	oduction	of gears	with die	casting	(BTL-2)						

	CO-PO Mapping														
	РО														
CO	PO	PO	PSO	PSO											
	1	1     2     3     4     5     6     7     8     9     10     11     12     1     2													
CO1	3														
CO2	3			2			2								
<b>CO3</b>	3			2											
CO4	3			1	2		2								
CO5	<b>CO5</b> 3 2 2														
	1: Low, 2-Medium, 3- High														

COURSE CONTENT		
MODULE-I	INTRODUCTION TO	10 Hrs

	GEARS	

Types of gears, classification, gear drawings, gearboxes, application of gears, gear production methods, an overview.

GEAR MATERIALS Non-metallic, ferrous and non-ferrous gears. Properties of gear materials, selection of material for typical gears and applications – blank preparation methods for different gears, size, type and material.

MODULE-II	<b>PRODUCTION OF GEARS</b>	9 Hrs

Gear milling different gears, cut quality obtainable. Gear hobbing, description and operation of machine, types of gears cut, hobbing cutters, work holding methods gear shaping, disc type and rack type gear shapers, Production of straight bevel gears and spiral gears, milling, generation by straight bevel gear generator.

MODULE-III	HEAT TREATMENT OF	10 Hrs
	GEARS	

Through hardening, case hardening, flames hardening, induction hardening of gears, Nitriding of gears. Tuft riding of gears. Inspection of gears for hardening defects

**GEAR FINISHING** Gear finishing advantages, finishing of gears by grinding, shaving, lapping, honing methods and cold rolling of gears. Description of machines, process and process parameters

MODULE-IV	GEAR INSPECTION	9 Hrs		
Types of gear errors, gear quality standards tooth thickness and base tangent length				
measurement, pitch errors	, radial run out errors,	profile errors, pitch error		
measurement. Composite error measurement. Computerized gear inspection centers.				
Reasons and remedies for gea	ar errors			

MODULE-V	MODERN GEAR	10 Hrs
	PRODUCTION METHODS	
Gear production by stamp	ing, die casting, power m	etal process, injection and

compression Moulding in plastics. Die casting, cold and hot rolling, mass production methods shear speed shaping. Gear broaching – Gleason. G-Trac Gear generation method

Total hours: 48
hours
SN
----
0
1
2
3
4
5

# EXT BOOKS:

TEXT BOOKS:

1. Society of Manufacturing engineers, Gear Processing and Manufacturing", 2nd 3 Edition 1984

2. Henry E.Merrit,Gear engineering ,Wheeler publishing,Allahabad,1992 REFERENCES:

1. Practical Gear design by Darle W. Dudley, McGraw-Hill book company

2. Earle Buckingham, Analytical mechanics of gears, Dover publications, New York, 1949

# Web Resources:

https://www.slideshare.net/sabihakhathun/gears-manufacturing-processinspectionfailure-and-remedies

	NA	RAYANA	A ENGINI	EERING	COLLEG	E: NELL	ORE			
			Med	chatroni	CS			R2020		
Semester	Н	ours / We	ek	Total	Credit		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
OE	3	0	0	48	3	40	60	100		
Course O	bjectives:									
1. To	understand	d the signi	ficance of	mechatror	nic systems	and sense	ors.			
2. To r	esearch dif	arch different kinds of electronic devices.								
3. To s	study impor	importance of hydraulic and pneumatic systems.								
4. To 9	, , , study variou	dy various types of digital electronic systems.								
5 To (	a describe the verieus interface device kinds									
5. 100	lescribe the	e various ir	iterrace dev	nce kinds.						
Course Out	t <b>comes</b> : Af	ter succes	sful compl	etion of th	e course, t	he student	will be ab	le to:		
CO 1	Illustrate	the signifi	icance of s	ensors and	l mechatro	onic systen	ns. (BTL-4	1)		
CO 2	Understa	nd various	s types' ele	ctronic de	vices. (BTL	-2)				
CO 3	Illustrate the importance of actuation systems, both hydraulic and									
	pneumatic. (BTL-4)									
CO 4	Understanding of digital electronic systems. (BTL-2)									
CO 5	Illustrate	the signifi	icance of m	nultiple int	erfaces. (E	STL-4)				
					-					

					(	CO-PO	Map	ping						
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1														1
CO2		1										1		1
CO3				2										
CO4	1	1											1	1
CO5	CO5 1 1 1													
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT										
MODULE – 1	MODULE - 1     INTRODUCTION     10 Hours										
Mechatronics systems, elements, levels of mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers,											
advantages and disad	lvantages of mechatronics systems. Sensors and	transducers, types,									
displacement, position	, proximity, velocity, motion, force, acceleration, tor	que, fluid pressure,									
liquid flow, liquid level	, temperature and light sensors.										
MODULE -2	ELECTRONIC DEVICES	09 Hours									
Solid state electronic	devices, PN junction diode, BJT, FET, DIA and TF	RIAC. Analog signal									
conditioning, amplifier	s, filtering. Introduction to MEMS & typical application	ons.									
MODULE-3 HYDRAULIC AND PNEUMATIC SYSTEMS 10 Hours											
Hydraulic and pneuma	tic actuating systems, Fluid systems, Hydraulic and p	oneumatic systems,									
control valves, electr	o - pneumatic, hydro-pneumatic, electro-hydrau	lic servo systems:									
Mechanical actuating s	systems and electrical actuating systems.										
MODULE-4	DIGITAL ELECTRONIC SYSTEMS	09 Hours									
Digital electronics and	systems, digital logic control, micro processors and	d micro controllers,									
programming, process	controllers, programmable logic controllers, PLCs	versus computers,									
MODULE-5		10 Hours									
System and interfacing and data acquisition, DAQS, SCADA, A to D and D to A conversions;											
Dynamic models and a	analogies, System response. Design of mechatronic	s systems & future									
trends.											
	Tota	l hours: 48 hours									

- 1. MECHATRONICS Integrated Mechanical Electronics Systems/KP Ramachandran & GK Vijaya Raghavan/WILEY India Edition/2008.
- 2. Mechatronics Electronics Control Systems in Mechanical and Electrical Engineering/ W Bolton/ Pearson Education Press/3rd edition, 2005.

### **Reference Book(s):**

- 1. Mechatronics Electronic Control Systems in Mechanical and Electrical Engg. 4th Edition, Pearson, 2012 W. Bolton
- 2. Mechatronics Principles and Application Godfrey C. Onwubolu, Wlsevier, 2006 Indian print.

	NA	RAYANA	<b>ENGINI</b>	EERING	COLLEG	E: NELL	ORE				
			MET	ALLURG	Υ			R2020			
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	:ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
VI	3	0	0	48	3	40	60	100			
Course O	bjectives:					_					
1. To expla	ain the con	stitution o	f alloys an	d purpose	of alloying	g metals					
2. To class	. To classify the tool steels and selection of tool steels										
3. To expla	ain the mod	les of frac	ture and fa	tigue frac	tures						
4. To unde	rstand the	structure a	and proper	ties of poly	ymers						
5. To make	e use of dif	ferent me	thods of te	sting mate	rials under	tension, c	compressio	on and			
shear load											
Course O	utcomes:	<b>terms:</b> After successful completion of the course, the student will be able to									
CO 1	Understa	nd about c	onstitution	n of allov a	nd nurnos	e of allovi	ng effect <i>i</i>	of			
	alloving e	lements v	with other r	netals ( <b>B</b> ]	<b>L-2</b> )	c of ano yn	ing, encerv	01			
				, in the second s	,						
CO 2	Classify t	he tool ste	els and ex	plain the r	nethod of l	neat treatm	nent of too	l steels			
	( <b>BTL-2</b> )			•							
CO 3	Explain t	he modes	of fracture	e and fatig	ue fracture	s Identify	(BTL-2)				
<u> </u>											
CO4	Define about polymers and types of polymers ( <b>B1L-1</b> )      Make use of different methods of testing meteorials under tension and the second seco										
	shear load ( <b>BTL -3</b> )										
			1								

	CO-PO Mapping													
CO		PO										PS	50	
	PO	PO								PO	PSO	PSO		
	1	2	3	4	5	6	C	8	9	10	11	12	1	2
							7							
CO1	3	3										3	3	
CO2	3	3										3	3	
CO3	3	3										3	3	
<b>CO4</b>	3	3										3	3	
CO5	3	3										3	3	
					1: Lov	v, 2-M	[edi	ium, 3- H	ligh					

	NARAYANA EN	IGINEERIN	G COL	LEGE:NI	ELLORE				
		Ν	<b>IETALL</b>	URGY		R20	20		
Semester	Hours / Week	Total hrs	Credits	Max Mar	:ks				
	L T P		С	CIE	SEE	TC	DTAL		
VI	3 0 0	48	3	40	60	10	0		
		COURSE	CONTER	TY OVIC 0		r	0.11		
MODULE-		STITUTION	OF ALI	LOYS & A	ALLOY		9 Hrs		
Introduction t	o Constitution of	alloys- class	sification	of alloys-	-pure metal- p	ourpo	ose of alloying-		
effects of allo	effects of alloying elements upon ferrite, carbide, iron- iron carbide diagram- effects of alloying								
elements in to	empering- nickel	steels-chromi	um steels	-nickel cl	nromium steels	s-ma	nganese steels-		
molybdenum	steels- tungsten ste	eels							
MODULE-	II	TOOI	L STEEL	ι <b>S</b>			10 Hrs		
Classification of	of Tool Steels-Sele	ction of Tool	Steels -S	hock-resis	sting Tool Stee	els-M	Iold Steels-		
Heat Treatmen	t of Tool Steels -T	ool Failures-0	Ceramic 7	Tools-Faul	ty Tool Design	n-Fa	ulty Steel-		
effect of residu	al stressesbending	fractures							
MODULE- III	MODULE- IIIFAILURE ANALYSIS10 Hrs								
Introduction- n	nodes of fracture-	fatigue fractu	res-effect	of strengt	h reducers- fau	lty p	processing-		
beach marks		0		C C		•			
MODULE- IV		NON-M	ETALLI	C MATE	RIALS		09 Hrs		
Polymers – t	ypes of polymer	r, Properties	and ap	plications	on various	the	rmosetting and		
thermoplastic p	olymers, Enginee	erin Ceramics	s – Proper	ties and a	pplications of	Al20	O3, SiC, Si3N4,		
PSZ and SIA	LON -Composit	es Classifica	tions M	etal Matr	ix and FRP	- 1	Applications of		
Composites									
MODULE-	V	MECHANI DEFORMA	CAL PR	OPERTII IECHAN	ES AND ISMS		10 Hrs		
Mechanisms o	f plastic deformat	ion, slip and	twinning	- Types	of fracture – '	Testi	ng of materials		
under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell),									
hardness tests, Impact test lzod and charpy, fatigue and creep failure mechanisms.									
Total Hours 48 Hrs									
TEXT BOOKS :									
1. Introducti	1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017								
2. A Text of Essential of Materials science and engineering/ Donald R.Askeland/Thomson.2013									
3. Material S	3. Material Science and Metallurgy/ Dr.V.D.Kodgire.2011								

3. Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

# **REFERENCES:**

- 1. Science of Engineering Materials / B.K.Agarwal,2017.
- 2. Engineering materials and metallurgy/R. K. Rajput/S.Chand,2015.
- 3. Engineering Materials and Their Applications R. A Flinn and P K Trojan / Jaico Books 1995.

	NA	RAYAN	A ENGIN	EERING	COLLEG	E:NELL	ORE			
		MC	DERN MAN	NUFACTUR	ING METHO	DDS		R2020		
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	`ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
OE	3	0	0	48	3	40	60	100		
Pre-Requ	Pre-Requisite: Basics on conventional manufacturing processes									
Course Obje	Course Objectives:									
1. Uno Pro	Jnderstand the basics of unconventional processes and Mechanical Energy Based Processes (BL2).									
2. Des	cribe the El	ectrical En	ergy Based	Processes	for machini	ng differen	t materials	(BL2)		
3. Exp	olain Chem	ical and El	lectro Cher	nical Energ	gy Based P	rocesses an	nd their su	itability to		
mac	chine differ	ent materia	ls (BL2)	15				<b>.</b>		
4. Des	cribe vario	us Thermal	Energy Ba	ised Process	ses for mac	hining appl	ications (B	L2).		
5. Exp	itations ( <b>PI</b>	and	a Abrasiv	e jet ma	chining p	rocess the	eir advant	ages and		
Course Ou	$\frac{110115(DL)}{1100000000000000000000000000000000000$	2). fter succes	sful comp	letion of th	e course f	he student	will be abl	e to:		
Course Ou	icomes. 7	iter succes	siui comp		ie course, t	ne student	will be doi	e to.		
CO 1	Understan	d the advar	ntages and l	imitations of	of unconver	ntional mac	hining proc	esses		
CO 2	Understan	d the Elect	rical energy	based pro	cesses and i	ts limitatio	ns			
CO 3	Students can understand the use of electro chemical energy process and their applications									
CO 4	Analyse th	ne thermal	energy base	ed process a	nd their lin	nitations				
CO 5	CO 5 Understand the applications and limitations of ultrasonic and Abrasive jet machining									
	process.									

	CO-PO Mapping													
CO		РО											PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	-	-	3	-	-	-	-	-	-	-	-
CO2	2	3	1	-	1	2	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	3	-	-	-	-	-	-	1	-
CO4	1	3	-	-	3	2	-	-	-	-	-	-	-	-
CO5	2	3	-	-	2	3	-	-	-	-	-	-	1	-
					1: Lo	w, 2-M	lediun	n, 3- Hi	igh					

	COURSE CONTENT	
MODULE – 1	Non – Traditional Machining Processes	10 Hours
Non – Traditional Machining P	rocesses: Introduction, Need, Classi	fication and Brief Overview,
Considerations in Process select	tion, Materials, Applications.	
Mechanical Energy Based Proc Water Jet Machining, Ultra So Process Parameters, Metal Rem	cesses: Abrasive Jet Machining, Wa nic Machining – Working Principle, noval Rate, Applications, Advantages	ter Jet Machining, Abrasive Description of Equipment, and Limitations.
At the end of the Module 1, stu	dents will be able to:	
1. Understanding of mechar	nical based unconventional processes	s (UMP).
2. It will develop the ability	of select the process for particular ap	oplication.
MODULE -2	Electrical Energy Based Processes	9 Hours
Electric Discharge Machining – W	orking Principles Description of Equi	nment Process Parameters
Surface Finish and MRR, Electrode Flushing, Advantages, Limitations	and Applications. Wire cut EDM – W	Tool Wear, Dielectric Fluid, /orking Principle and Applications.
At the end of the Module 2, stu	dents will be able to:	
1. Understanding of electric	al and chemical based unconvention	al processes (UMP).
2. The students will learn th	e principle of hybrid process and the	eir applications.
		10.11
MODULE-3	Chemical and Electro Chemical	10 Hours
Chamical Machining and Electro	Chemical Machining Working Bring	into Description of Equipment
Etchants Maskants Techniques of	f Annlying Maskants Process Param	eters Surface Finish and MRR
Electro Chemical Grinding, Electro	Chemical Honing, Applications, Adv	antages and Limitations.
At the end of the Module 3, stu	dents will be able to:	
1. Understanding of electric	al and chemical based unconvention	al processes (UMP).
2. The students will learn the	e principle of hybrid process and the	ir applications.
		10.11
MODULE-4	Thermal Energy Based Processes	10 Hours
Laser Beam Machining and Dri	lling, Plasma Arc Machining, Elect	ron Beam Machining – Working
Principle, Description of Equipme	nt, Process Parameters, Applications	, Advantages and Limitations.
At the end of the Module 4, stu	dents will be able to:	

1. Understandi	ng of thermal b	based unconventional processes (L	IMP).
2. The student	s will learn the	importance of high pulse energy s	ource
MODUL	E-5	Ultrasonic Machining	9 Hours
ULTRASONIC MACH Effect of parameters advantages & Disadv ABRASIVE JET MACH abrasive work mater finish. Applications, a Operation, Applicatio	INING (USM): I on Material re vantages of USI IINING (AJM): ial, Process cha advantages & E on, Advantages	Introduction, equipment, tool mate emoval rate, tool wear, Accuracy, s M. Introduction, Equipment, Variables aracteristics-Material removal rate Disadvantages of AJM. Water Jet M s and limitations	erials & tool size, abrasive slurry, urface finish, applications, s in AJM: Carrier Gas, Type of , Nozzle wear, Accuracy & surface achining: Principle, Equipment,
At the end of the M	Iodule 5, stud	ents will be able to:	
1. The students process.	s will understa	nd the use of controlled explosive	e and spark energy in deformation
2. The student	s will also learn	n about thin coating techniques.	
			Total hours: 48 hours

# Content beyond syllabus:

1. Advanced Manufacturing process like different types of 3D printing Machines.

# Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	Non – Traditional	CO1	https://archive.nptel.ac.in/courses/112/107/112107078
	Machining		1
	Processes		
2	Electrical Energy	CO2	https://archive.nptel.ac.in/courses/112/107/112107078
	<b>Based Processes</b>		1
3	Chemical and	CO3	https://archive.nptel.ac.in/courses/112/107/11210707
	Electro Chemical		1
	Energy Based		
	Processes		
4	Thermal	CO4	https://archive.nptel.ac.in/courses/112/107/11210707
	Energy		1
	Based		
	Processes		
5	Ultrasonic	CO5	https://archive.nptel.ac.in/courses/112/107/112107078/
	Machining		

1. Jain V.K., Advanced Machining Processes, 1st Edition, Allied Publishers Pvt. Ltd., New Delhi, 2007.

2. Pandey P.C and Shan H.S., Modern Machining Processes, 1/e, McGraw Hill, New Delhi, 2007.

3. Ian Gibson, David W. Rosen, Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 1/e, Springer, 2010.

### **Reference Book(s):**

1. Chua C.K., Leong K.F. and Lim C.S., Rapid Prototyping: Principles and Applications, 2/e, World Scientific Publishers, 2003.

2. Benedict G.F., Nontraditional Manufacturing Processes, 1/e, CRC Press, 1987.

3. Mishra P.K., Nonconventional Manufacturing, 1/e, Narosa Publishing House, New Delhi, 2014.

4. McGeough J.A., Advanced Methods of Machining, 1/e, Springer, 1988

# **Online Resources:**

1. https://archive.nptel.ac.in/courses/112/107/112107078/

Web Resources:

1. https://archive.nptel.ac.in/courses/112/107/112107077/

NARAYANA ENGINEERING COLLEGE:NELLORE										
	NANO MATERIALS R2020									
Semes	Hour	rs / Wee	k	Total	Credit		Max Ma	rks		
ter	L	, T	Р	hrs	С	CIE	SEE	TOTAL		
VII	3	0	0	48	3	40	60	100		
Course	Objective	s:								
<ol> <li>To Understand the properties of Nano-materials in diverse fields.</li> <li>To Gain knowledge about the Nanomaterials and their properties,</li> <li>To emphasis on the physics of Nanomaterials in detail .</li> <li>To Highlights of the virtual way of understanding the courses materials.</li> <li>To know the application based approach.</li> </ol>										
<b>Course Outcomes</b> : After successful completion of the course, the										
student will be able to:										
<b>CO 1</b> Find the scope of nano science and technology (BTL-4)										
CO 2	<b>CO 2</b> Design the down top approach different types of electro chemical						chemical			
	deposition	(BTL-6)								
CO 3	Understan	d Diffra	action te	chnique	, spectro	scopy te	echnique	s (BTL-2)		
CO 4	Study the	propert	ies of sy	nthesis	of nano i	material	s (BTL-1	)		
CO 5	Understand the application of nano materials (BTL-2)									

	CO-PO Mapping													
		PO								PS	PSO			
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3				2									
CO2	3			2										
CO3	3			2										
CO4	3			1	2									
CO5	3				2									
	1: Low, 2-Medium, 3- High													

COURSE CONTENT					
MODULE - I	INTRODUCTION	10 Hrs			

Introduction: Scope of nanoscience and nano tecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials. Synthetic Methods: Bottom-Up approach: - Sol-gel synthesis, micro emulsions or reverse micelles, co-precipitation method, solvo thermal synthesis.

At the end of the MODULE-1, students will be able to:

1. Understand the constituents of matter, nanomaterials, properties and usefulness.

# MODULE - II TOP-DOWN APPROACH 9 Hours

Top-Down approach:- Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling

At the end of the MODULE-II, students will be able to:

1. Able to learn how to understand the basic behavior of Nanomaterials.

MODULE - III	TECHNIQUES FOR	10 Hrs
	CHARACTERIZATION	

Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination

At the end of the MODULE-III, students will be able to:

1. Able to compete with International Student in Nanomaterial Sciences

MODULE - IV STUDIES OF NANO 9 Hrs	<b>MODULE - IV</b>	STUDIES OF NANO	9 Hrs
-----------------------------------	--------------------	-----------------	-------

Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nano shells, self assembled monolayers, and monolayer protected metal nanoparticles, nano crystalline materials, magnetic nanoparticles and important properties in relation to nano magnetic materials,

At the end of the MODULE-IV, students will be able to:

1. Able to use the knowledge for higher study and research.

MODULE - V	APPLICATIONS	10 Hours

Engineering Applications of Nanomaterials-aviation and space, chemical industry, automotive engineering, building, consumer electronics- fuel cells, batteries, sensors

At the end of the Module 5, students will be able to:

1. Able to explore the possible physics research, their applications in society and health care unit.

Total hours:	48
	hours

onten	t beyond syllabus:		
1.			
elf-St	udy:		
Conte	ents to promote self-Lea	rning:	
SN O	Торіс	СО	Reference
1	To find the scope of nano science and technology	CO1	https://web.pdx.edu/~pmoeck/phy3 81/intro-nanotech.pdf
2	To design the down top approach different types of electro chemical deposition	CO2	https://www.intechopen.com/chapt ers/49413
3	To understood Diffraction technique, spectroscopy techniques	CO3	https://research- repository.griffith.edu.au/bitstream/ handle/10072/34561/62679_1.pdf
4	To study the properties of synthesis of nano materials	CO4	https://www.youtube.com/watch?v= 251R49OOqAA
5	To under stood the application of nano materials	CO5	https://www.deshbandhucollege.ac.in/p df/resources/1590038900_P(H)-VI- Nanomaterials-Unit-5.pdf

EXT BOOKS:

1. Nanomaterials- Synthesis, Properties and Applications, Edited by A.S. Edelstein and R.C. Cammarata, Institute of Physics Publishing, London, 1998 (paper back edition)

2. The Physics and Chemistry of NanoSolids by Frank J. Owens and Charles P. Poole Jr, WileyInterscience, 2008.

REFERENCES:

1. Nanochemistry: A Chemical Approach to Nanomaterials, by G.Ozin and A. Arsenault, RSC Publishing, 2005

2. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, Edward L. Wolf, Wiley-VCH, 2nd Reprint (2005)

Web Resources:

https://www.youtube.com/watch?v=evE08ycZfnM

NARAYANA ENGINEERING COLLEGE:NELLORE															
				P	OWE	R PLA	ANT E	NGI	NEERI	NG			R20	22	
Semester		H	ours / `	Week	Г	otal	Cre	dit			Ma	ax Mar	ks		
	L		Т	Р		hrs	C		CIE	S	SEE		Т	OTAL	
IV	3		0	0		48	3		40		60		100	)	
Pre-requisite:BasicsinEngineeringMathematics,Physics&EngineeringMechanics															
Course Ol	ojectiv	es:													
1. To understand the sources of energy, power plant economics and environmental aspects.															
2. To learn	about	the w	orkin	g of th	e com	poner	its of	differ	ent por	wer pl	ants.		-		
3. To unde	rstand	the w	orking	g princ	ciple, t	types,	layou	t of d	iesel p	ower	olant &	& Gas	turbine	s.	
4. To acqui	ire kno	wledg	ge on	worki	ng pri	nciple	, layoi	ut, au	xiliary	equip	ments	s of hy	dro eleo	ctric po	wer
plant.					01	1			2					1	
5. To acqui	ire kno	wled	ge on	renew	able e	nergy	sourc	es, w	orking	princi	iple ar	nd type	es of nu	clear	
power plant	s. wor	king i	orinci	ole and	1 adva	ntage	s and	hazar	ds.	r	I · · ·				
<b>F</b> - ··· - <b>F</b> -····	,	01				8-									
<b>Course Outcomes</b> : After successful completion of the course ,the student will be able to:															
CO1	CO1 List & understand the sources of energy, power plant economics and environmental														
	aspects. (BL-1)														
CO2	Explain the working of the components of different power plants. (BL-2)														
CO3	Discu	Discuss the working principle, types, layout of diesel power plant & Gas turbines.(BL-2)													
CO4	Explain the working principle, layout, auxiliary equipments of hydro electric power plant.(BL-								BL-						
CO5	Interr	oret the	e renev	vable e	energy	source	es, wor	king	principl	e and t	vpes c	of nucle	ear pov	ver plant	s.
	work	ing pri	nciple	and ad	lvantag	ges and	d hazaı	ds.(B	L-2)		<b>J</b> 1		1	1	,
					(	CO-PO	Mapp	oing							
CO		I		1	I	Р	0	r		I		T	PS	50	
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	-	-	-	-	-	-	-	-	-	-	-	2	1	
CO2	1	1	-	2	-	-	-	-	-	-	-	1	-	1	
CO3	1	1	-	2	-	-	-	-	-	-	-	-	-	-	
CO4	1	1	-	2	-	-	-	-	-	-	-	1	1	1	
CO5	1	1	2	1	-	-	-	-	-	-	-	1	1	1	
					1: Lo	w, 2-N	ledium	n, 3- H	ligh						
					C	COUR	SE CC	<b>)NTE</b>	NT						
										-					

MODULE - 1

INTRODUCTION

10 Hours

Introduction to the Sources Of Energy - Resources and Development of Power in India. Conventional and non- conventional energy sources, Power Plant Economics and Environmental Considerations: Capital Cost, Investment of Fixed Charges, Operating Costs, General Arrangement of Power Distribution, Load Curves, Load Duration Curve. Definitions of Connected Load, Maximum Demand, Demand Factor, Average Load, Load Factor, Diversity Factor - Tariff - Related Exercises. Effluents from Power Plants and Impact on Environment - Pollutants and Pollution Standards - Methods of Pollution Control. Inspection And Safety Regulations.

At the end of the Module 1, students will be able to:

1. Acquire knowledge about various sources of energy.

2. Learn about the various costs associated with power plant.

3. Understand the various environmental aspects of power plants.

MODULE -2	STEAM POWER PLANT	<b>10 Hours</b>

Introduction to Boilers- Modern Hig Modern Trends in Cycle Improvem Equipments, Types of Coals, Coal Systems. Steam Power Plant : Comb Travelling Grate Stokers, Spreade Components, Combustion Needs a Collectors, Cooling Towers And He <u>Controls.CO2 Recorders.</u> At the end of the Module 2, students 1. Understand the construction 2. Learn about coal storage &	gh Pressure and Supercritical Boile nent - Waste Heat Recovery, Fluid Handling, Choice of Handling Eq pustion Process : Properties of Coal r Stokers, Retort Stokers, Pulver nd Draught System, Cyclone Fur at Rejection. Analysis of Pollution : will be able to: n of boilers. handling equipment.	ers - Analysis of Power Plant Cycles - ized Bed Boilers., Fuel and Handling uipment, Coal Storage, Ash Handling - Overfeed and Under Feed Fuel Beds, fized Fuel Burning System And Its nace, Design and Construction, Dust from Thermal Power Plants - Pollution			
3. Understand the concepts of	Design and Construction of Power	Plant .			
MODULE 2		10 Hours			
MODULE-3	DIESEL & GAS TURBINE PLANT	10 Hours			
DIESEL POWER PLANT: Diesel P	ower Plant, Construction, Plant lay	out with auxiliaries, fuel storage.			
GAS TURBINE PLANT: Introducti Working Closed and Open Cycle Plants.	on - Classification - Construction - Gas Turbines. Advantages And D	Layout with Auxiliaries - Principles of isadvantages Combined Cycle Power			
At the end of the Module 3, students	will be able to:				
1. Acquire knowledge about	Diesel power plant.				
2. Learn about Plant layout &	& fuel storage.				
3. Understand the concepts of	of Gas turbines.				
MODULE-4	HYDRO ELECTRIC PLANT	08 Hours			
HYDRO ELECTRIC DOWER DI A	& PROJECTS	Cuala / Flow Massurament Drainage			
Area Characteristics - Hydrographs -	- Storage and Pondage - Classificati	on of Dams and Spill Ways			
HYDRO PROJECTS AND PLANT Pumped Storage Plants.	Γ: Classification - Typical Layouts	- Plant Auxiliaries - Plant Operation			
At the end of the Module 4, students	will be able to:				
1. Acquire knowledge about	Hydro electric power plant.				
2. Learn about Hydrographs					
3. Acquire knowledge on Hy	/dro projects .				
MODULE-5	NON-CONVENTIONAL	10 Hours			
	SOURCES & NUCLEAR POW STATION	ER			
POWER FROM NON-CONVENTION Wind Energy - Types of Turbines - I	ONAL SOURCES: Utilization of Set HAWT & VAWT-Tidal Energy. MI	olar Collectors- Working Principle, HD power Generation.			
NUCLEAR POWER STATION: Nu Materials - Nuclear Reactor -Reactor Reactor, Sodium-Graphite Reactor, I Radiation Hazards and Shielding - R	clear Fuel - Nuclear Fission, Chain r Operation. Types of Reactors: Pres Fast breeder Reactor, Homogeneous adioactive Waste Disposal.	Reaction, Breeding and Fertile ssurized Water Reactor, Boiling Water Reactor, Gas Cooled Reactor,			
At the end of the Module 5, students	will be able to:				
1. Acquire knowledge on non-conventional sources of energy.					

- 2. Learn about Nuclear reactors.
- 3. Understand the hazards and waste disposal of radioactive substances.

Total hours:	48 hours

### **Content beyond syllabus:**

1. Electrical Equipment in Power Station.

# Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Power plant	CO1	https://getmyuni.azureedge.net/assets/main/study-
	economics and		material/notes/mechanical_engineering_power-plant-
	environmental aspects		engineering_power-plant-economics-variable-load-
			problem_notes.pdf
2	Coal & ash handling	CO2	https://instrumentationtools.com/ash-handling-
	in Thermal power		system-in-thermal-power-plant/
	systems		
3	Diesel power plant	CO3	https://www.academia.edu/42399482/Diesel_Power_P
			lant_Principle_Component_Layout_Applications
4	Typical Layout of	CO4	https://www.electricaleasy.com/2015/09/hydroelectric
	Hydroelectric Power		-power-plant-layout.html
	Plant		
5	Types of Nuclear	CO5	https://www.britannica.com/technology/nuclear-
	Reactors		reactor/Types-of-reactors

#### Text Book(s):

- **1.** P.K. Nag, "Power Plant Engineering", 3rd edition, TMH, 2013.
- Wakil, "Power plant technology", M.M.EI TMH Publications. 2.

# **Reference Book(s):**

- 1. Rajput, "A Text Book of Power Plant Engineering:, 4th edition, Laxmi Publications, 2012.
- Ramalingam, "Power plant Engineering", Scietech Publishers, 2013
   P.C. Sharma, "Power Plant Engineering", S.K. Kataria Publications, 2012.
- 4. Arora and S.Domakundwar, "A course in Power Plant Engineering", Dhanpat Rai & Co (p) Ltd, 2014.

	NARAYANA ENGINEERING COLLEGE: NELLORE								
		Prod	uct Desig	n and De	evelopme	ent		R2020	
Semester	Н	ours / We	ek	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	C	CIE	SEE	TOTAL	
OE	3	0	0	48	3	40	60	100	
Course O	bjectives:								
1. To und	erstand the	e basic str	ucture of F	Product De	esign, Prod	uct Develo	opment Pr	ocess and	
Explain the	e technique	iniques uses in product design and development.							
2. To de	velop abil	ability for analyzing the life cycle assessment and Justify physical							
prototype	in line with	n design fo	or robustne	ess.					
		es: After successful completion of the course, the student will be able to:							
Course Out	comes: At	<b>mes</b> : After successful completion of the course, the student will be able to:							
CO 1	Interpret	basic stru	cture of Pr	oduct Des	ign , Produ	ict Develo	pment Pro	cess and	
	Scope of	Product D	evelopme	nt. (BTL-2)					
<u> </u>			· · · · · · · · · · · · · · · · · · ·						
		the techn	iques of Pr	oduct Fun	ction, Prod	uct leard	own And		
	Experime	ntation. (I	31L-1)						
CO 3	Apply the	e knowled	lge of Ben	chmarking	g, Establish	ing Engine	eering		
	Specificat	specifications and Product Architecture in product. (BTL-3)							
	•								
CO 4	Relate the	e knowlec	lge of Brair	nstorming	, Directed S	Search, Mo	orphologic	<mark>al Analysis</mark>	
	and Conc	ind Concept Variants for concept selection and embodiment. (BTL-2)							
CO 5	Analysis o	lysis of Product Metrics and life cycle assessment. (BTL-4)							
	,								

	CO PO Manning													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													2
CO2		1										1		1
CO3				2										
CO4	2	1											2	1
CO5				2								2		
CO6	1													
	1: Low, 2-Medium, 3- High													

COURSE CONTENT

MODULE – 1	INTRODUCTION	10 Hours
Strategic importance of	of Product development - integration of customer,	designer, material
supplier and process	planner, Competitor and customer - behavior analy	ysis. Understanding
customerpromoting cu	stomer understanding-involve customer in developr	ment and managing
requirements - Organiz	zation process management and improvement.	1
MODULE -2	CONCEPT GENERATION, SELECTION AND TESTING	09 Hours
Plan and establish proc	duct specifications. Task - Structured approaches - cl	larification - search-
externally and interna	ally-Explore systematically - reflect on the solution	ns and processes -
concept selection - r	methodology - benefits. Implications - Product (	change - variety -
component standardiz	zation - product performance - manufacturability	- Concept Testing
Methodologies.		1
MODULE-3	PRODUCT ARCHITECTURE	10 Hours
Product development	management - establishing the architecture - cre	ation - clustering -
geometric layout deve	elopment - Fundamental and incidental interactior	ns - related system
level design issues - see	condary systems -architecture of the chunks .	
MODULE-4	INDUSTRIAL DESIGN	09 Hours
Integrate process desig	gn - Managing costs - Robust design – Modular Desig	n-Integrated design
-Integrating CAE, CAD	, CAM tools – Simulating product performance	and manufacturing
processes electronicall	y - Need for industrial design-impact – design proce	ss - investigation of
customer needs - asses	ssing the quality of industrial design.	
MODULE-5	DESIGN FOR MANUFACTURING AND PRODUCT	10 Hours
	DEVELOPMENT	
Definition - Estimation	n of Manufacturing cost-reducing the component of	costs and assembly
costs – Minimize syste	m complexity - Prototype basics - Principles of protot	yping - Planning for
prototypes - Economic	Analysis - Understanding and representing tasks-	
	Tota	l hours: 48 hours

1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill International Edns.1999

# **References:**

- 1. Concurrent Engg./Integrated Product Development. Kemnneth Crow, DRM Associates, 6/3,ViaOlivera, Palos Verdes, CA 90274(310) 377-569,Workshop Book
- 2. Effective Product Design and Development, Stephen Rosenthal, Business One Orwin,

Homewood, 1992,ISBN, 1-55623-603-4

3. Tool Design – Integrated Methods for successful Product Engineering, Stuart Pugh, Addison Wesley Publishing, Neyourk, NY, 1991, ISBN 0-202-41639-5

	NA	RAYAN	A ENGIN	EERING	COLLEG	E:NELL	ORE		
	PRO	DUCTIO	N AND O	PERATIO	NS MAN	AGEMEN	IT	R2020	
Semester	H	ours / Wee	ek	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
OE	3	0	0	48	3	40	60	100	
Course C	bjectives:	ctives:							
1.	To Underst	nderstand the concepts of operations management and types of production							
	systems.	ems.							
2.	To Acquire	cquire the knowledge of forecasting techniques							
3.	To Underst	Understand the importance of value engineering and plant layout							
4.	To Gain kr	Gain knowledge of Aggregate Planning and MRP							
5.	To Determ	ine the ex	act schedu	ling which	n will be fo	ollowed in	production	1	
Course Ou	itcomes: Aff	ter succes	sful compl	etion of th	e course, t	he student	will be ab	e to:	
CO 1	Illustrate	<mark>the opera</mark>	i <mark>tion mana</mark>	<mark>gement a</mark>	nd concept	<mark>t in produ</mark> c	<mark>ct develop</mark>	<mark>ment</mark>	
CO 2	<mark>Explain fo</mark> i	recasting to	echniques a	ind errors i	n forecastir	<mark>ig</mark>			
CO 3	<mark>Summari</mark> z	mmarize the value engineering and plant layout							
CO 4	<mark>Determin</mark>	etermine various aggregate planning and MRP							
CO 5	Explain th	e differer	nt types of	schedulin	<mark>g</mark>				

	CO-PO Mapping													
СО		РО								PSO				
	РО	РО	PO	PO	PO	РО	Ρ	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1		1	1							1	1	1	
CO2		1		1				1						1
CO3	1		1	1	1							1	1	
CO4	1		1	1	1								1	
CO5		2	1	1				1				1	1	
CO6	1		1		1								1	
					1: Lov	w, 2-M	lediu	m, 3- Hi	gh					

	ľ	NARAY	ANA E	NGINEERI	ING COLI	LEGE: NEI	LLORE	
		PRODU	UCTION	N AND OP	ERATIONS	MANAGE	MENT	R2020
Semester	Hours	/ Week		Totalhrs	Credits	Max Mark	S	
	L	Т	Р		С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
				COURSE	CONTENT			
MODULE- I				INT	FRODUCT	ION		10 Hrs
Introduction: (	) perati	ons Mar	nagemer	nt – Definit	ion, Object	ives, Types	of Production	System, Difference
between OM &	ε PM,	Histori	cal Dev	velopment of	of Operatio	ns Manager	ment, Current I	ssues in Operation
Management, Pr	oduct	Design -	- Requi	rements of (	Good Produ	ct Design, F	roduct Develop	ment - Approaches,
Concepts in Proc	luct De	evelopm	ent, Star	ndardization	, Simplifica	tion,, Introd	uction to Concu	urrent Engineering.
MODULE- II				FC	DRECASTI	NG		9 Hrs
Forecasting: Int	roduct	ion, Stat	istical F	orecasting T	Techniques,	Moving Ave	rage, Exponenti	al Smoothing
Technique, Erro	rs in F	orecastin	ng and	Evaluation of	of Forecasti	ng Techniqu	ies.	
MODULE- I	Ι	V	ALUE	ENGINEE	RING AN	D PLANT	LAYOUT	10 Hrs
Value Engineer	ing a	nd Plan	t Layou	It: Value E	ngineering -	- Objectives	, Types of Valu	ues, Function and
Cost, Product Li	fe Cvc	le. Steps	in Valu	e Engineerii	ng. Facility	Location ar	nd Lavout – Fact	or Considerations
in Plant Location	n Coi	mparativ	e Study	of Rural and	d Urban Site	s Methods	of Selection of I	Plant Lavout
Objectives of G	and lar	vout Dri	nciples	Types of La	a croan bic	Balancing		lant Layout,
Objectives of O	500 la	yout, 111	nerpies,	Typesor La	iyoui, Line	Datationing		
MODULE- I	V		AG	GREGATE	PLANNI	NG AND M	IRP	9 Hrs
Aggregate Plan	ning a	and MR	P: Age	regate Plan	ning – Defi	nition, Diffe	erent Strategies,	Various Models of
Aggregate Plan	ning-	Graphi	cal Mo	odels, Mas	ter schedu	ling, Mater	ial Requirement	nt Planning(MRP)-
Terminology, Ty	pes o	f Demai	nds, Inp	outs to MRI	P, Techniqu	es of MRP,	Benefits and I	Drawbacks of MRP,
Manufacturing R	esourd	ces Planr	ing (M	RP II), Just i	in Time (JIT	) Philosoph	y, Kanban Syste	m, Pull Systems vs.
Push Systems, E	Benefit	s of JIT						
MODULE- V				S	CHEDULI	NG		10 Hrs
Scheduling: Pol	icies, 7	Гуреs of	Schedu	ling, Schedu	iling Strateg	ies, Schedu	ling and Loadin	g Guidelines,
Forward and Ba	ckware	d Schedu	ling, G	rant Charts,	Priority De	cision Rule	s, Flow Shop So	cheduling, Job
Shop Scheduling	, Line	of Bala	nce.					
							<b>Fotal Hours</b>	48 Hrs
TEVT BOOK								
TEXT BOOK	<b>FC</b> -		חעו	A. J Due	1		oth T	
I. I Buffa	E.S. a	na Sarin	K.K., $[$	viouern Proc	uction / Op	berations Ma	anagement, 8 th E	cation, whey
2 Donners	Llu.,		uotion a	uz. nd Onomation	na Managar	nont 2rd Edit	ion DUI Loomi	ag Dyt. I td
2. Painters	tivam hi 20	к., rroa	uction a	nu Operatio	ns manager		ion, rni Learnn	ig rvi. Liu.,
newDel	in, 20	12.						

#### **REFERENCES:**

- 1. James L. Riggs, Jim Rigs, Production Systems: Planning, Analysis and Control, 4th Edition, WaveLand Press, 1992.
- 2. Chary S.N., Production and Operations Management, 5th Edition, McGraw Hill Education, 2017.
- 3. Richard B.Chase, Ravi Shankar, Robert Jacobs F., Operations and Supply Chain Management, 15th Edition, McGraw Hill Education, 2018.
- 4. Joseph G. Monks, Operations Management-Theory and Problems, 3rd Edition, McGraw Hill Education, 1987.
- Steven Nahmias, Tava Lennon Olsen, Production and Operation Analysis: Strategy – Quality – Analytics – Applications, 7th Edition, Waveland Press Inc., 2015.

	NARAYANA ENGINEERING COLLEGE:NELLORE								
		REFRIC	GERATIO	N & AIR	CONDIT	IONING		R2020	
Semester	H	ours / We	ek	Total	Credit		Max Mar	`ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
VII	3	0	0	48	3	40	60	100	
Course O	bjectives:	ectives:							
1. To defin	ne basic of	basic of Refrigeration and need of craft Refrigeration.							
2. To unde	erstand Sim	tand Simple Vapour Refrigeration System							
3. To learn	about Sin	about Simple Vapour Absorption System							
4. To unde	erstand the	stand the basic of Air conditioning and processes on psychometric charts.							
5 To study	y of variou	s Air Con	ditioning E	Equipment	-operating	principles			
			U	1 1	1 0	1 1			
Course Ou	itcomes: A	fter succes	ssful comp	letion of th	ie course, t	he student	will be abl	le to:	
CO 1	Determin	e the COI	of Refrig	eration Sy	stem and E	Bell-Colem	an Cycle.	(BTL-3)	
CO 2	Analyze the vapour compression cycle and interpret the usage of refrigerants								
	(BTL-4)								
CO 3	Explain the working of vapour absorption system. (BTL-2)								
<b>CO 4</b>	Classify the different types of psychometric processes. (BTL-4).								
<b>CO 5</b>	Identify v	various typ	bes of air c	onditionin	g equipme	nt used. (	BTL-3)		

	CO-PO Mapping													
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	3	1	2										3	
CO2	3		2				1						3	
CO3	3	1	2										3	
CO4	3	1	2										3	
CO5	3	1	2										3	
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT								
MODULE – 1	Introduction to Refrigeration	10 Hours							
Necessity and Applications, Carno Machines, Unit of Refrigeration, C	essity and Applications, Carnot Refrigerator, First and Second Law Applied to Refrigerating hines, Unit of Refrigeration, COP, EER, Different Refrigeration Methods.								
Air Refrigeration: Bell-Coleman Numerical Problems - Refrigeratior	Cycle, Ideal and Actual Cycles, Needs of Air Crafts	, Open and Dense Air Systems -							
At the end of the Module 1, stud	ents will be able to:								
1. Gain the knowledge or	n working of Refrigeration system	m							
2. Apply the basic princip	les of refrigeration to solve the p	problem							
3. Identify the type of air problems	craft refrigeration system and e	evaluate the variable to solve the							
MODULE -2	Vapour Compression	9 Hours							
	<b>Refrigeration (VCR) System</b>								
<ul> <li>Expander Vs. Throttling, Effect - Cycle- Construction and Use of of Refrigerants Used - Nomencla</li> <li>At the end of the Module 2, stud</li> <li>1. Understand the working</li> <li>2. Solve the numerical pro</li> <li>3. Learn about Ozone Dep</li> </ul>	of Sub Cooling and Super Heatin P-h Charts - Refrigerants - Desi ature- Lubricants - Ozone Deple ents will be able to: g of various parts of vapour com blems on vapour compression letion and Global Warming	ng - Cycle Analysis - Actual rable Properties - Classification etion - Global Warming- npression refrigeration system refrigeration system.							
MODULE-3	Vapour Absorption	10 Hours							
	Refrigeration (VAR) System								
Vapor Absorption Refrigeration and Li Br-Water ( Two Shell & Fou Three Fluid Absorption System	( <b>VAR</b> ) <b>System</b> -Description and W ar Shell) System -Calculation of Ma	Vorking of NH3 - Water System ax COP, Principle of Operation of							
<b>STEAM JET REFRIGERATION</b> Motive Steam Required Principle a Hilsch Tube.	<b>EAM JET REFRIGERATION SYSTEM:</b> Working Principle and Basic Components-Estimation of otive Steam Required Principle and Operation of: (I) Thermo-Electric Refrigerator (ii) Vortex Tube or lsch Tube.								
At the end of the Module 3, stud	ents will be able to:								
1. Explain the working of N	H3- water system								
2. Understand principle of	operation of Three fluid absorption	ion system							
3. Illustrate the working pri	nciple of Steam Jet Refrigeration	n system							
MODULE-4	Introduction to Air	9 Hours							

		Conditioning		
Psychrometric F	Properties & Proce	sses - Characterization of Sensible	and Latent Heat Loads - N	Jeed For
Ventilation Con	sideration of Infil	trated Air - Heat Load Concepts	Air Cooler (Evaporative (	Cooling)
Window Split	Summer Winter	Vest Round Central Air Condition	ng Systems	cooning)
, window, Spiit, s	Summer, winter,	Tear Round, Central All Condition	ing systems.	
At the end of th	e Module 4, stud	ents will be able to:		
1. Learn al	out different con	nponents of Air Conditioning sy	stem.	
2. Define	osychrometric ch	art and Processes		
3. Underst	and the working	of Summer, winter and Year rou	nd air conditioning syster	ms
	C C			
MOD	ULE-5	Air Conditioning Equipment	10 Hours	
Air Conditionir	g Equipment - H	lumidifiers - Dehumidifiers - Air	Filters, Fans and Blower	ſS.
Human Comfor	t: Requirements	of Temperature, Humidity And C	Concept of Effective	
Temperature, C	omfort Chart. He	eat Pump - Heat Sources - Differ	ent Heat Pump Circuits.	
At the end of th	a Madula 5 atud	ente will be able to:		
		tents will be able to.		
I. Gan	n knowledge on A	Air Conditioning Equipment		
2. Den	nonstrate the wor	king of Fans and Blowers		
3. Exp	lain the working	of Heat Pump and Heat Pump C	ircuits	
			Total hours: 48 1	hours

Sel C	<b>f-Study</b>	y: to promote self-Learn	ing:	
	SN O	Торіс	CO	Reference
	1	Air cycle refrigeration system	CO1	https://archive.nptel.ac.in/courses/112/105/112105129/

2	Simple vapour	CO2	https://www.slideshare.net/ilovemylifesomuch/simple-
	refrigeration system		vapour-compression-refrigeration-system
3	Simple Vapour	CO3	https://mechcontent.com/vapour-absorption-
	Absorption		refrigeration-system/
	refrigeration system		
4	Psychrometric	CO4	https://hvac-eng.com/psychrometric-processes/
	Properties &		
	Processes		
5	Fans and Blowers	CO5	https://d13mk4zmvuctmz.cloudfront.net/assets/main/study-
			material/notes/mechanical_engineering_turbomachines_cen
			trifugal-pumps-blowers-and-compressors_notes.pdf

- 1. Refrigeration and Air Conditioning-P.L.Ballaney, 2/e, 2012.
- 2. Basic Refrigeration and Air-Conditioning P.N.Ananthanarayanan / TMH, 4/e, 2013.

# **Reference Book(s):**

- 1. Refrigeration and Air Conditioning / Manohar Prasad / New Age, 2/e, 2013
- 2. Principles of Refrigeration Dossat / Pearson Education, 4/e, 2007

# Web Resources:

- 1. <u>https://www.youtube.com/watch?v=h5wQoA15OnQ</u>
- 2. https://www.youtube.com/watch?v=PjcdqAkP0UA
- 3. <u>https://www.youtube.com/watch?v=GzEMdQk1QTk</u>

NARAYANA ENGINEERING COLLEGE:NELLORE														
Basics of Mechanical Engineering														
Semester	Hours / Week Total Credit Max Marks													
	L	Т	Р	hrs	С	CIE	TOTAL							
OE	3	0	0	48	3	40	60	100						
Pre-Requisite: Basic Mathematics and Physical Science.														
Course O	bjectives:													
1. To study	working o	of differei	nt power p	lants										
2. To unde	rstand abo	ut concep	ts of pump	s and turb	ines.									
3. To learn	about wor	king of I	C Engines.											
4. To study	about cor	cepts of a	different ty	pes of Boi	lers.									
5 To unde	rstand con	cepts of R	efrigeratio	on and Air	conditioni	ng.								
Course Out	tcomes: Aft	er succes	sful compl	etion of th	e course, t	he student	: will be abl	e to:						
CO 1	Learn abo	out Prope	rties of gas	ses and ste	eam. (BTL-:	1)								
CO 2	Understa	nd about	working of	f different	power pla	nts. (BTL-2	2)							
CO 3	Understa	nd conce	ots of pum	ps and tur	bines. (BT	L-2)								
CO 4	Learn abo	out the co	ncepts of I	C Engines	. (BTL-1)									
CO 5	Learn abo	out conce	pts of diffe	rent types	s of Boilers	. (BTL-1)								
CO 6	Understa	nd variou	s refrigera	tion syste	ns. (BTL-2	)								

	CO-PO Mapping													
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	Ρ	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1												2	1
CO2		1		2								1		1
CO3														
CO4	1	1											1	1
CO5			2									1		
CO6	1													
	•	•		•	1: Lov	w, 2-N	ledi	um, 3- Hi	gh					

	COURSE CONTENT	
MODULE – 1	Properties of Steam	8 Hours

	rmation, Types of Steam, Enthalp	y, Specific volume, Internal
energy and dryness fraction of st	eam, use of Steam tables, steam ca	llorimeters
At the end of the Module 1, stud	lents will be able to:	
1. Acquire knowledge at	oout various Gas laws.	
2. learn about properties	of steam.	
3. understand the concep	its of steam calorimeters and use	of steam tables.
MODULE -2	Power Plant Engineering	8 Hours
Introduction – Energy Renewable	and Non – Renewable Energy Sourc	ces – Classification of Power Plants
based on Sources of Energy – Ther Nuclear Power Plant – Diesel Powe	mal Power Plant or Steam Power Pl er Plant – Gas Turbine Power Plant	ant – Hydro Electric Power
At the end of the Module 2, stud	lents will be able to:	
1. Learn about energy reso	urces	
2. Understand concepts of	various types of power plants.	
3. Distinguish between Die	sel and Gas turbine power plant.	
2		
MODULE-3	Pumps & Turbines	8Hours
Pumps – Classification of Pumps, C	Centrifugal Pump, Applications of Ce	entrifugal Pump, Priming,
Reciprocating Rumps Single Acting		
Recipiocating Fullips, Single Acting	g Reciprocating Pump, , –Hydraulic 1	Furbine – Classification of
Hydraulic Turbines, Impulse Turbin	g Reciprocating Pump, , –Hydraulic 1 ne, Reaction Turbine, Difference bet	Furbine – Classification of ween Impulse and Reaction
Hydraulic Turbines, Impulse Turbin Turbine.	g Reciprocating Pump, , –Hydraulic T ne, Reaction Turbine, Difference bet	Furbine – Classification of ween Impulse and Reaction
Hydraulic Turbines, Impulse Turbin Turbine.	g Reciprocating Pump, , –Hydraulic 1 ne, Reaction Turbine, Difference bet	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud	g Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud	g Reciprocating Pump, , –Hydraulic T ne, Reaction Turbine, Difference bet lents will be able to:	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud 1. Explain construction and 2. Classify pumps based on	Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud 1. Explain construction and 2. Classify pumps based on 3. Classify turbines based of	Reciprocating Pump, , –Hydraulic T ne, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud 1. Explain construction and 2. Classify pumps based on 3. Classify turbines based of	g Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps l principle of operation on principle of operation	Furbine – Classification of ween Impulse and Reaction
At the end of the Module 3, stud 1. Explain construction and 2. Classify pumps based on 3. Classify turbines based of	Reciprocating Pump, , –Hydraulic T ne, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation on principle of operation	Furbine – Classification of ween Impulse and Reaction
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps a principle of operation on principle of operation <b>Design &amp; Manufacturing</b>	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b>
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design	Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps l principle of operation on principle of operation <b>Design &amp; Manufacturing</b> l, design process. Selection of Eng	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties –
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Engine the design.	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties –
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Engine design.	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th         Types of manufacturing processes	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Eng he design. -casting, arc welding & gas welding	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th         Types of manufacturing processes	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps a principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Eng he design. -casting, arc welding & gas welding	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th         Types of manufacturing processes         At the end of the Module 4, stud	Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps of principle of operation on principle of operation <b>Design &amp; Manufacturing</b> l, design process. Selection of Eng he design. -casting, arc welding & gas welding	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in the         Types of manufacturing processes         At the end of the Module 4, stud         1. Learn about types of Hest	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps n principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Engine he design. -casting, arc welding & gas welding lents will be able to: at Engines.	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in th         Types of manufacturing processes         At the end of the Module 4, stud         1. Learn about types of Hea         2. Understand classification	Reciprocating Pump, , –Hydraulic T le, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps of principle of operation on principle of operation <b>Design &amp; Manufacturing</b> b, design process. Selection of Eng he design. -casting, arc welding & gas welding lents will be able to: at Engines.	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications
Hydraulic Turbines, Impulse Turbin         Turbine.         At the end of the Module 3, stud         1. Explain construction and         2. Classify pumps based on         3. Classify turbines based of         MODULE-4         General considerations of design         Manufacturing considerations in the         Types of manufacturing processes         At the end of the Module 4, stud         1. Learn about types of Hea         2. Understand classification         3. Compare 2 stroke and 4	Reciprocating Pump, , –Hydraulic T he, Reaction Turbine, Difference bet lents will be able to: l operation of different pumps i principle of operation on principle of operation <b>Design &amp; Manufacturing</b> h, design process. Selection of Eng he design. -casting, arc welding & gas welding lents will be able to: at Engines. h and working of IC engines stroke, petrol and diesel engines	Furbine – Classification of ween Impulse and Reaction <b>8 Hours</b> gineering Materials - properties – and its applications

MODULE-5	I.C Engine	8 Hours

. . Heat Engine – Types of Heat Engine – External Combustion Engine, IC Engine (Internal Combustion), Classification of I.C. Engine, Two Stroke Petrol Engine, Four Stroke Engine, Valve Timing Diagram, Port Timing Diagram, Comparison of Two Stroke and Four Stroke Engines, Comparison of Petrol Engine and Diesel Engine, Fuel System of a Petrol Engine, Ignition Systems.

At the end of the Module 5, students will be able to:

- 1. Understand classification and construction of boilers
- 2. Distinguish between Fire tube and Water tube Boilers..
- 3. Compare boiler mountings and accessories.

MODULE-6	Refrigeration and Air	8 Hours							
	Conditioning								
ntroduction – Terminology of Refrigeration and Air Conditioning – Properties of Refrigerants – List of									

Introduction – Terminology of Refrigeration and Air Conditioning – Properties of Refrigerants – List of Commonly used Refrigerants – Types of Refrigerating System –Air Conditioning – Application of Air

At the end of the Module 6, students will be able to:

- 1. Analyze the basics cycles of Refrigeration and Air Conditioning Systems
- 2. Outline the operation of refrigerators
- 3. Identify different refrigerants and applications

Total hours: 48 hours

#### Content beyond syllabus:

1. Software related to psychometric processes

### Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	Properties of Gases	CO1	http://ocw.sogang.ac.kr/rfile/2011/course3-
	and Gas laws.		phy/Chapter%2001_20111028163501.pdf
2	Hydro Electric	CO2	https://en.wikipedia.org/wiki/Hydroelectricity
	Power Plant		
3	Centrifugal Pumps	CO3	https://en.wikipedia.org/wiki/Centrifugal_pump
4	Concepts of IC	CO4	https://en.wikipedia.org/wiki/Internal_combustion_engin
	Engines		<u>e</u>
5	Classification of	CO5	http://www.boilers.guide/classifications/
	boilers		
6	Applications of Air	CO6	https://nptel.ac.in/content/storage2/courses/112105129/
	Conditioning		pdf/RAC%20Lecture%203.pdf

- 1. Power Plant Engineering by PK Nag, 3rd edition McGraw Hill Publication.
- 2. Elements of Mechanical Engineering Fourth Edition S Trymbaka Murthy, University Press.
- 3. Basic Civil and Mechanical Engineering, by Prof.V.Vijayan, Prof.M.Prabhakaran and Er.R.Viashnavi, S.Chand Publication.

### **Reference Book(s):**

- 1. Refrigeration and Air Conditioning by CP Arora, 3rd edition McGraw Hill Publication.
- 2. Internal Combustion Engines by VGanesa, 4th Edition, McGraw Hill Publication.
- 3. Basic Mechanical Engineering by DK Chavan and G K Pathak ,Standard Book House, 2016 edition.

# Online Resources:

### Web Resources:

- 1. <u>https://www.youtube.com/watch?v=TxqPAPg4nb4</u>
- 2. <u>https://www.youtube.com/watch?v=PjsZGn4B6cw</u>
- 3. <u>https://www.youtube.com/watch?v=mZ-OLcvILCU</u>

		NA	RAYANA EI	NGINEERING C	OLLEGE:NELLO	RE					
AUTOMOBILE ENGINEERING											
Semester	Hours / Week			Total hrs	Credit Max Marks			s			
	L	Т	Р	-	С	CIE	SEE	TOTAL			
OE	3	0	0	48	3	40	60	100			
Pre-requis	site: Basic ( bjectives:	concepts i	n Thermo	dynamics an	d Internal Co	mbustion er	ngines				
	1. To lea 2.To unde	arn the vari rstand the j	ious compo principles	nents of autom	nobile. n system.						
6. To explo	3.To learn 4.To Impa 5. To addu ore practical	the concep ort knowled ress the unc lly about th	ot of steerin lge on susp lerlying con le compone	ng mechanism. ension system ncepts and met nts present in a	and brakes. hods behind au an Automotive	ttomobile pol electrical sys	lution and tem.	control.			

C	ourse Outcomes: After successful completion of the course, the student will be able
to:	
CO 1	Demonstrate the knowledge on working of various components of an automobile.[BT-2]
CO 2	Identify and analyze the various systems and sub systems suitable for an automobile.[BT-2]
CO 3	Explain the probable solution in the design of steering systems[BT-3]
CO 4	Analyze the complex issues in suspension and braking system.[BT-4]
CO 5	Apply the techniques to estimate pollution from the emissions of automobiles. [BT-3]
CO 6	Identify the components present in an Automotive electrical system.[BT-2]

CO-PO Mapping														
СО			РО										PSO	
	PO	PO	PO	PO										PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1				2	3	2	3	3	2	2	2	2
CO2	3	2	2		2	2	2		3	1	2	1	2	1
CO3	1	3	1	3					1	2			1	1
CO4	3	1			1								1	1
CO5	1	1		1	3					2	1	1	2	1
CO6	1	1		3		3	1	2				1	3	1
					1: Lov	w, 2-M	ledium	, 3- Hi	igh					
					CC	OURSE	E CON	TENT						
MODUI	LE – 1				]	Basics	of an .	Auton	nobile					8h
Classification	on of a	automo	biles,	Comp	onents	of a f	our wh	eeler a	automo	obile, (	Chassis	s and t	ody, Po	wer unit
Rear wheel	l drive	e, Fron	nt whe	el dri	ve, Fo	ur wh	eel dr	ive, E	ngine	constr	uction	, Туре	es of au	ıtomobile
engines, Tu	rbo ch	arging	, Supe	r charg	ing, C	rank ca	ase ver	ntilatio	n, Oil	filters,	Oil pu	imps.		

At the end of the Module 1, students will be able to:

- 1. Identify the components of automobile. [BT-3]
- 2. understand the concept of automobile engine. [BT-2]
- 3. demonstrate the principle of oil filters. [BT-2]

MODULE -2	Transmission System	8h

Clutches- Principle- Types: Cone Clutch, Single Plate Clutch, Multi Plate Clutch, Magnetic and Centrifugal Clutches, Fluid Fly Wheel – Gear – Box Types: Sliding Mesh, Constant Mesh, Synchromesh, Epi-Cyclic, Over Drive, Torque Converter, Automatic transmission system, Propeller Shaft – Hotch – Kiss Drive, Torque Tube Drive, Universal Joint, Differential, Rear Axles.

At the end of the Module 2, students will be able to:

- 4. understand the principle of clutch. [BT-2]
- 5. differentiate the types of clutches. [BT-4]
- 6. explain the automatic transmission systems. [BT-2]

MODULE-3	Steering System	8h

Requirements and functions of steering system, Layout of steering system, Steering Geometry – Camber, Castor, King Pin Rake, Combined Angle Toe-In, Center Point Steering. Types Of Steering Mechanism – Ackerman Steering Mechanism, Davis Steering Mechanism, Steering Gears – Types, Steering Linkages, Power steering.

At the end of the Module 3, students will be able to:

- 4. Explain the terminology related to steering mechanism .[BT-3]
- 5. Classify the steering mechanisms .[BT-2]
- 6. Demonstrate the power steering.[BT-2]

MODULE-4	Suspension System	8h

Objects of Suspension Systems – Rigid Axle Suspension System, Torsion Bar, Shock Absorber, Independent Suspension System.

Braking System: Mechanical Brake System, Hydraulic Brake System, Pneumatic and Vacuum Brake Systems.

At the end of the Module 4, students will be able to:

1. Identify the types of suspension systems. [BT-2]

2.analyze the various brake systems. [BT-2]

3.Understand the principle of shock absorber. [BT-2]

MODULE-5	Emissions from Automobiles	8h
----------	----------------------------	----

National and International Pollution Standards – Pollution Control–Modern Techniques in automobiles – Multipoint Fuel Injection for SI Engines – Common Rail Diesel Injection, Emissions from Alternative Energy Sources– Hydrogen, Biomass, Alcohols, LPG, CNG – Their Merits And Demerits.

At the end of the Module 5, students will be able to:

- 4. Explain concepts of multi fuel injection and CRDI . [BT-2]
- 5. Identify the emissions from alternate energy systems. [BT-2]

6. Demonstrate the modern techniques in automobiles. [BT-2]

MODULE-6	Electrical System	8h

Charging Circuit, Generator, Current – Voltage Regulator – Starting System, Bendix Drive, Mechanism of Solenoid Switch, Lighting Systems, Horn, Wiper, Fuel Gauge – Oil Pressure Gauge, Engine Temperature Indicator.

At the end of the Module 6, students will be able to:

1. understand the importance of electrical system in automobiles. [BT-2]

2.Demonstrate the working of temperature indicator. [BT-2]

3. Explain the mechanism solenoid switch. [BT-2]

Total hours: 48 hours

### Term work:

1.planning to visit automobile workshops and study various transmission systems and submit Detailed Report.

2.case study on modern automobile engines and submit the report.

# Content beyond syllabus:

# Application of Sensors in automobiles.

### Self-Study:

Contents to promote self-Learning:

S	Торіс	Reference
. No.		
1	Basics of an Automobile	https://lecturenotes.in/notes/22622-note-for-autor
		ae-by-subrat-sahu?reading=true
2	Transmission System	https://mrcet.com/downloads/digital_notes/ME/IV
		e%20Engineering.pdf
3	Steering System	https://sites.google.com/site/mec4703automobilee
		cabinet
4	Suspension System	https://docs.google.com/viewer?a=v&pid=sites&
		GRvbWFpbnxtZWM0NzAzYXV0b21vYmlsZW
		fGd4OjU4OTJjOGU5ODA5YTVlYjA
5	Emissions from Automobiles	https://lecturenotes.in/m/21176-automotive-pollution
		control?reading=true
6	Electrical System	http://fmcet.in/AUTO/AT6502_uw.pdf

### Text Book(s):

1. Automobile Engineering - Vol.1 & Vol.2, Kirpal Singh, Standard Publishers distributor.

2. Automobile Engineering, R.K.Rajput, Lakshmi Publication.

### **Reference Book(s):**

1. Automobile Engineering, Joseph Hidner.

2. Automobile Engineering, William Crouse, TMH, 10th edition, 2006.

3. Automobile Engineering, K.K.Ramalingam/Scitech Publication.

4. Automotive engines, Newton, Steeds & Garret.

#### **Online Resources:**

1.http://160592857366.free.fr/joe/ebooks/Automative%20engineering%20books/Automotive%20Engineering%20Powertrain,%20Chassis%20System%20and%20Vehicle%20Body.pdf

2.<u>http://www.engineering108.com/pages/Automobile_Engineering/Automobile-engineering-ebooks-free-</u> download.html

3. https://easyengineering.net/automobilebooks/

4. https://www.pdfdrive.com/automobile-engineering-books.html

### Web References:

1. https://nptel.ac.in/courses/107/106/107106088/

2. https://bookauthority.org/books/best-automotive-engineering-books

3. https://www.youtube.com/watch?v=SGL2pFyNVTQ
| NARAYANA ENGINEERING COLLEGE:NELLORE                    |                                                                                            |                       |            |              |             |                 |            |                              |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|------------|--------------|-------------|-----------------|------------|------------------------------|--|--|--|
|                                                         |                                                                                            |                       |            | ROBO         | TICS        |                 |            | R2020                        |  |  |  |
| Semester                                                | Но                                                                                         | urs / We              | ek         | Total        | Credit      |                 |            | Max Marks                    |  |  |  |
|                                                         | L                                                                                          | Т                     | Р          | hrs          | С           | CIE             | SEE        | TOTAL                        |  |  |  |
| OE                                                      | 3                                                                                          | 0                     | 0          | 48           | 3           | 40 60 100       |            |                              |  |  |  |
| Pre-requisite: Basic knowledge of CAD/CAM,CNC Machines. |                                                                                            |                       |            |              |             |                 |            |                              |  |  |  |
| Course Ob                                               | ojectives                                                                                  | :                     |            |              |             |                 |            |                              |  |  |  |
| <b>1.</b> To in                                         | troduce                                                                                    | the histo             | ry, const  | ructional    | features a  | nd othe         | r basic    | information on robotics      |  |  |  |
| 2. To in                                                | troduce t                                                                                  | to the ser            | isors use  | d in robot   | ics         |                 |            |                              |  |  |  |
| 3. To te                                                | 3. To teach robot programming of a typical robot as also the concepts of path planning and |                       |            |              |             |                 |            |                              |  |  |  |
| appli                                                   | cations.                                                                                   |                       |            |              |             |                 |            |                              |  |  |  |
| 4. To lea                                               | arn the co                                                                                 | oncepts o             | f Robotic  | s, kinemat   | ics of robo | t, princip      | oles of re | obot drives and              |  |  |  |
|                                                         |                                                                                            | · At the c            | nd of th   |              | tudopt will | ho abla         | to:        |                              |  |  |  |
|                                                         | Lindorst                                                                                   | and the l             |            | to about the | in importa  |                 | tu.        | in today and futura          |  |  |  |
| 01                                                      | and rob                                                                                    | and the i             | uration a  | rd cubeve    | tome (PL 2  | 11CE 01 10<br>\ | JUOLICS    | in today and future          |  |  |  |
| <u> </u>                                                | Evolain                                                                                    | the work              | ing of ro  | hot accord   | cerios cuch | )               | arc grin   | porc (PL 2)                  |  |  |  |
| 02                                                      |                                                                                            |                       |            |              |             |                 | Jis,grip   | pers.(BL-S)                  |  |  |  |
| CO 3                                                    | Explain<br>robot(BL                                                                        | robot p<br>3)         | rogramm    | ing langu    | ages whic   | h may           | adopt      | in different applications of |  |  |  |
| CO 4                                                    | understa                                                                                   | and the a             | pplicatior | ns of vario  | us types of | end effe        | ectors, a  | and sensor devices(BL-2)     |  |  |  |
| CO 5                                                    | Apply th                                                                                   | ne Desigr             | n and imp  | olementati   | ion program | nming o         | of robot   | systems (BL-3)               |  |  |  |
| CO 6                                                    | use the practice                                                                           | techniqu<br>e. (BL-2) | ues, skil  | ls, and m    | odern eng   | ineering        | g tools    | necessary for engineering    |  |  |  |

	CO-PO Mapping													
СО		PO PSO												
	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	РО 7	PO 8	РО 9	PO 10	Р О 11	PO 12	PSO 1	PSO 2
CO1	1	2										2	2	
CO2	2	2	2										2	
CO3	2	3											2	
CO4	2	2										1	2	
CO5	3	2	2										2	
CO6	2	2		2									2	
					1: Low	, 2-M	edium	п, 3- Н	igh					

COURSE CONTENT										
MODULE - 1INTRODUCTION08 Hours										
Definition of robot, necessity, advantages and disadvantages of robots, basic components of a robotic systems, robot joints, degrees of freedom, configurations of robots –cartesian, cylindrical, spherical, articulated, SCARA, work volume, specification of a robot- load carrying capacity (pay load), reach, stroke, speed of motion, speed of response, stability, repeatability, resolution and Accuracy.										
At the end of the Module 1, s	students will be able to:									
<ol> <li>Understand the other areas(BL-2</li> </ol>	manufacturing, maintenance, research of nuc )	clear power plants and many								
2. Understand the	degrees of freedom.(BL-2)									

1. Recall work vol	ume, specification of a robot- load carrying capacity.(B	L-2)							
MODULE -2	DRIVES/ACTUATORS, GRIPPERS, SENSORS	08 Hours							
Hydraulic, pneumatic and drives. Types of end-effectors/grip Position, velocity, force, tac	electrical. Stepper motors, brushless motors, servo opers, mechanical grippers. ctile, range, proximity sensors, machine vision - elemen	motor, comparison of ts of machine vision.							
At the end of the Module 2 1. Classify the robot a 2. Explain the working 3. Understand the pr	, students will be able to: ctuators, grippers,sensors.(BL-2) g of actuators, grippers,sensors .(BL-3) oblems in actuators, grippers,sensors.(BL-2)								
MODULE-3	ROBOT CLASSIFICATION	08 Hours							
robots TRAJECTORY PLANNING:Pa planning, Joint space tra trajectory.	th vs trajectory, joint space and cartesian space schem jectory including via points - cubic polynomials,	es, basics of trajectory cartesian straight-line							
At the end of the Module 3	, students will be able to:								
1.Know the robot class	ifications(BL-1)								
2.understand basics of	trajectory planning, Joint space trajectory including via	points.(BL-2)							
3.Explain cubic polynor	mials, cartesian straight-line trajectory.(BL-2)								
MODULE-4	KINEMATIC ANALYSIS OF ROBOTS	08 Hours							
Homogeneous transforma kinematics of robot, DH DYNAMICS:Introduction to	tion matrices, inverse of transverse transformation, matrix, HT of robot coordinate system, 2R and 3F robot dynamics.	forward and inverse robot manipulators.							
At the end of the Module 4	, students will be able to:								
1. Understand Ho	mogeneous transformation matrices.(BL-2)								
2. Describe the ki	nematics of robot, DH matrix, HT of robot coordinate sy	/stem.(BL-2)							
3. Know 2R and 3	R robot manipulators . (BL-2)								
MODULE-5	ROBOT PROGRAMMING	08 Hours							
Importance, types, manu commands for elementary	al setup, lead through programming, textual pro operations - RAPID.	gramming languages,							
At the end of the Module 5	, students will be able to:								
<ol><li>Explain the typ</li></ol>	pes, manual setup of robot programming.(BL-3)								
8. Understand the	e ROBOT programming languages. (BL-2)								
9. Solve different	effects in elementary operations. (BL-3)								
MODULE-6	APPLICATIONS OF ROBOT	08 Hours							
Robot Application in Man Process - spot and continuc	ufacturing: Material Transfer - Material handling, Ic ous arc welding & spray painting - Assembly andInspect	ading andunloading - ion.							
At the end of the Module 6	, students will be able to:								
1. Know different typ	es of Robot Application in Manufacturing .(BL-2)								
<ol> <li>Understand Material handling, loading andunloading - Process .(BL-2)</li> </ol>									

- 3. Demonstration of spot and continuous arc welding & spray painting Assembly and Inspection. (BL-1)
  - Total hours: 48 Hours

#### Term work:

- **1. Robotics**, design, construction, and use of machines (**robots**) to perform tasks done traditionally by human beings.
- 2. Robots are widely used in such industries as automobile manufacture to perform simple repetitive tasks,
- **3.** Industries where work must be performed in environments hazardous to humans.

#### Content beyond syllabus:

IOT BASED

# ROBOTICS

## Self-Study:

1.

### Contents to promote self-Learning:

SNO	Торіс	Reference			
1	INTRODUCTION	https://nptel.ac.in/courses/112/105/11210524			
		<u>9/</u>			
2	DRIVES/ACTUATORS,	https://nptel.ac.in/courses/112/105/11210524			
	GRIPPERS,SENSORS	<u>9/</u>			
3	ROBOT CLASSIFICATION	http://www.learnerstv.com/Free-Engineering-Video-lectures-ltv071-			
		Page1.htm			
4	KINEMATIC ANALYSIS OF	http://www.potel.iitm.co.in			
	ROBOTS	nup.//www.npter.nun.ac.m			
5	ROBOT PROGRAMMING	https://nptel.ac.in/courses/112/101/112101099/			
6	APPLICATIONS OF ROBOT	https://nptel.ac.in/courses/112/101/112101099/			

## Text Book(s):

- 1. Saeed B. Niku, Introduction to Robotics : Analysis, Systems, Applications, Pearson Education Inc., 2001
- 2. Industrial Robotics, Technology, Programming and Applications: Groover M.P., Weiss M. and Odrey N.G., McGraw Hill Higher Education, 2nd ed., 2012.
- 3. Robotics, Fundamental Concepts and analysis : Ashitave Ghosal, Oxford Press, 1st ed., 2006.

### Reference Book(s):

- 1. Robotics and Control : R.K.Mittal and I J. Nagarath, McGraw Hill, 2015
- 2.Robotics : Fu K S, R.C. Gonazalez and C.S.G Lee, McGraw Hill, 2008

3.Introduction to Robotics, Mechanics and Control: John J.Craig, Pearson Education, 3rd ed., 2009.

## Online Resources:

- 1. <u>https://nptel.ac.in/courses</u>
- 2. <u>https://freevideolectures.com/university/iitm</u>

- 3. <u>https://nptel.ac.in/courses/112/101/112101099/</u>
- 4. <u>https://swayam.gov.in/nd1_noc19_me74/preview</u>

## Web Resources:

- 1.<u>https://nptel.ac.in/courses/112/101/112101099/</u>
- 2. <u>https://swayam.gov.in/nd1_noc19_me74/preview</u>
- 3. http://www.nptel.iitm.ac.in
- 4. http://www.learnerstv.com/Free-Engineering-Video-lectures-ltv071-Page1.htm

NARAYANA ENGINEERING COLLEGE:NELLORE										
			Enginee	ering Mat	erials		-	R2020		
Semester	He	ours / We	ek	Total	Credit		Max Mar	irks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-Requisite: No Pre requisite is required.										
Course Objectives:										
1. To study	y structure	of metals	and types	of solids.						
2. To unde	erstand about	ut equilib	rium diagra	ams and p	roperties o	f steel and	l iron.			
3 To learn	about heat	t treatmer	nt of steel	r	F					
5. 10 lean	i about nea	. ueaunei		2						
4. To study	y about pro	perties ar	d structure	es of ceran	nic & Com	posite ma	terials.			
Course 0			ما مع مع مع	ation of th				a <b>t</b> a :		
Course Ou	tcomes: An	er succes	stul compl	etion of th	e course, t	ne studen	t will be abi	e to:		
CO 1	Learn abc	out bonds	crystalliza	ation of m	etals and c	letermina	tion of grai	in sizes of		
	metals an	id allovs a	and constit	ution of al	lovs (BT-1	)		51205 01		
CO 2	Understa	nd about	constructio	on of equ	ilibrium di	- <i>i</i> agrams an	d to study	about		
	nhase dia	grams (R	T-2)	Shi Ori equ		ugrunns un	ia to study	about		
CO 3	Understa	nd nrone	rties and st	ructures	of various	errous an	d non-ferr	ous metals		
	and allove	(BT-2)		.i detui es t		chious un				
CO 4	Know and	apply th	e concepts	of heat tr	eatment of	allovs. (B	(T-3)			
CO 5	Learn abo	out comm	on crystal	structure	of metals	(BT-1)	- /			
CO 6	Learn abo	ut variou	is composit	te materia	ls (RT-1)	(2, 1)				

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	Ρ	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	0	8	9	10	11	12	1	2
							7							
CO1	1	2											1	1
CO2				1								1		2
CO3													1	1
CO4	1		2		1									
CO5												2		
CO6													1	
		1	1	1	1: Lov	w, 2-M	ledi	um, 3- Hi	gh	1	1	1		

	COURSE CONTENT										
MODULE – 1	Structure of Metals	8 Hours									
Construction and interpretation of Thermal equilibrium diagram of binary nonferrous alloys, Gibb's phase rule, Study of Eutectic, Eutectoid, Peritectic, Peritectoid and monotectic reactions. Lever rule. Iron– Iron Carbide Equilibrium diagram, Study and interpretation. Plain Carbon Steels: types, properties and applications Cast Irons: types, properties and applications.											
<ul> <li>At the end of the Module 1, students will be able to:</li> <li>1. Acquire knowledge about various bonds in solids.</li> <li>2. learn about grains and determination of grain sizes.</li> <li>3. understand the concepts of constitution of alloys.</li> </ul>											
MODULE -2	Equilibrium of Diagrams	8 Hours									
MODULE -2Equilibrium of Diagrams8 HoursExperimental methods of construction of equilibrium diagrams, Isomorphous alloy systems, equilibrium cooling and heating of alloys, Lever rule, coring miscibility gaps, eutectic systems, congruent melting intermediate phases, peritectic reaction. Transformations in the solid state – allotropy, eutectoid, peritectoid reactions, phase rule, relationship between equilibrium diagrams and properties of alloys. Study of important binary phase diagrams of Cu-Ni-, Al-Cu, Bi-Cd, Cu-An, Cu- Sn and Fe-Fe ₃ C.											
At the end of the Module 2, stud	lents will be able to:										
7. Learn about construction	of equilibrium diagrams.										
8. Understand eutectic and	eutectoid systems.										
9. Learn about phase rule a	nd to study important binary pha	se diagrams.									

	MODULE-3	Metals & Alloys	8 Hours								
	Cast Irons and Steels : Stru	ucture and properties of White Ca	st iron, Malleable Cast iron,								
	grey cast iron, Spheriodal	graphite cast iron, Alloy cast iro	ns. Classification of steels,								
	structure and properties of	of plain carbon steels, Low alloy s	steels, Hadfield manganese								
	steels, tool and die steels.										
	Non-ferrous Metals and A	lloys :									
	Structure and properties c alloys.	of copper and its alloys, Aluminiur	n and its alloys, Titanium and its								
At the	end of the Module 3, stud	ents will be able to:									
7.	Understand the structure	and properties of cast iron.									
8	Understand the structure	and properties of steels									
9	Learn about structure and	1 properties of Non ferrous meta	ls and allovs								
2.											
	MODULE-4	Heat treatment of Alloys	8 Hours								
	Effect of alloying elemen	ts on Iron – Iron carbon system	m, Annealing, normalizing,								
	Hardening, TTT diagrams,	tempering , Hardenability, surface	- hardening methods, Age								
	hardening treatment, Cryog	genic treatment of alloys.									
At the	end of the Module 4, stud	ents will be able to:									
4.	Understand about effect	of alloying elements on iron.									
5.	Learn and understand ab	bout hardenability and hardening	methods								
6.	Know the concepts of cry	yogenic treatment of alloys.									
	1 .										
	MODULE-5	<b>CRYSTAL STRUCTURE &amp; ATOMIC</b>	8 Hours								
		PACKING									
Co FC De slip Ha Re	PACKING         Common crystal structure of metals, Calculation of atomic packing factor for simple cubic, BCC, FCC and HCP crystal structures.         Defects in crystals, point, line, surface and volume defects. Mechanisms of plastic deformation: slip and twinning, Effect of dislocations on plastic deformation, Critical resolved shear stress, Hall– Petch equation, cold working and hot working, strain Hardening and Bauchinger effect.         Recovery, Recrystallisation, Grain growth and its effect on mechanical properties of metals.										
At the	end of the Module 5, stud	ents will be able to:									
	10. Learn about Crystal s	structure of Metals.									
	11. Learn about Defects	in crystals.									
	12. Understand the mech	anical properties of above mater	als								

MODULE-6	Compos	ite Materials	8 Hours								
Fracture: Type of fract modes of fracture, duct Fatigue: Types of fati Test),S–N Curve, Stru- fatigue of metal, Low of improvement for the fat Creep: Creep Test, C between creep curve at Diffusion: Fick's laws	ture in metals, Ductile a ile-brittle transition. gue loading, Experimen cture of fatigue fractur ycle fatigue, Cumulative igue life. reep curve, Creep stre nd stress-rupture curve of diffusion, Application	and brittle fracture, G ntal determination of ed specimen, Effect e fatigue damage, Fa ength, Creep deform of diffusion theory in	Griffith theory of brittle fracture, f fatigue strength (RR– Moore t of metallurgical variables on actors to be considered for the nation mechanisms, difference Mechanical Engineering.								
At the end of the Module	e 6, students will be a	ole to:									
4. Know about type	s of fractures in meta	ls									
5. Understand abou	t fatigue and fatigue s	trength.									
6. Learn about defe	ormation mechanisms	, diffusion theory.									

Total hours: 54 hours

# Content beyond syllabus:

- 2. Nano Materials .
- **3.** Bio Medical Materials.
- 4. Polymers

# Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	effect of grain	CO1	https://en.wikipedia.org/wiki/Grain_boundary
	boundaries on the		
	properties of metal		
2	construction of	CO2	https://www.sciencedirect.com/topics/engineering/equili
	equilibrium		brium-phase-diagram
	diagrams		
3	Classification of	CO3	https://mme.iitm.ac.in/vsarma/mm5025/SS.pdf
	steels		
4	Cryogenic treatment	CO4	https://www5.kau.se/sites/default/files/Dokument/subpa
	of alloys		ge/2010/02/48_671_684_pdf_16802.pdf
5	Crystalline ceramics	CO5	https://www3.nd.edu/~amoukasi/CBE30361/Lecture Cera
			mics_2014.pdf
6	Composite	CO6	https://www.researchgate.net/figure/Classification-of-
	Materials.		composite-materials-a-Based-on-matrix-materials-and-b-
			based-on_fig1_280921582

## Text Book(s):

1. Introduction to Physical Metallurgy / Sidney H. Avener.

2. A Text of Essential of Materials science and engineering/ Donald R.Askeland/Thomson.

3.Dr Material Science and Metallurgy/kodgire

4. V. Raghavan, "Material Science and Engineering", 4th Edition, Prentice Hall of India Ltd., 1994.

#### **Reference Book(s):**

1. F Science of Engineering Materials / Agarwal

2. Engineering materials and metallurgy/R. K. Rajput/ S.Chand.

3. Engineering Materials and Their Applications – R. A Flinn and P K Trojan / Jaico Books

4. William F Smith, Javad Hashemi, Ravi Prakash, "Material Science and Engineering", 5th Edition, McGraw Hill Education,

2014.

#### **Online Resources:**

1. <u>https://libguides.cam.ac.uk/materialsscience</u>

2. https://www.sdsmt.edu/Academics/Library/Resources/SubjectGuide/?guide=Materials%20and%20 Metallurgical%20Engineering

*3*. <u>https://libguides.wpi.edu/c.php?g=355327&p=4998512</u>

#### Web Resources:

1. <u>https://www.youtube.com/watch?v=IW4GX3W18ds</u>

2 <u>https://www.youtube.com/watch?v=S96zHUSxZc0</u> 3<u>https://www.youtube.com/watch?v=IkYimZBzguw</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
	TOTAL QUALITY MANAGEMENT R2020										
Semester	Hours / Week			Total hrs	Credit	Max Marks					
	L T P				С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			

**Pre-requisite:** Basic Concept of Statistics and Fundamental Knowledge of Mathematics; Principles of Management; Understanding of different functional areas of management

# **Course Objectives:**

1. To provide students an insight into the concept of quality, cost of quality, international quality standards.

2.To learn the principles of Total quality management, techniques for problem solving.

3.To learn about various tools of quality management used in various industrial applications.

4. To familiarize the students with principles of Quality Function Development (QFD)

5. To Impart knowledge on ISO 9000:2000 Quality System

<b>Course Outcomes</b> : After successful completion of the course, the student will be able to:			
CO 1	Understanding the concepts and principles of TQM.[BT-2]		
CO 2	Analyze various quality problems and contribute towards continuous improvement in the system .[BT-3]		
CO 3	formulate quality circles to find solutions to problems in industry.[BT-6		
CO 4	use Quality Function Development (QFD) technique in manufacturing and service sectors.[BT-3]		
CO 5	Identify the Need of ISO 9000:2000 Quality System and its Elements .[BT-3]		
CO 6	apply six sigma approach to various industrial situations.[BT-3]		

COURSE CONTENT				
MODULE – 1	Basic concepts of Total Quality Management	8h		
Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Principles of TQM, Barriers to TQM mplementation. Quality standards – Need of standardization - Institutions – bodies of standardization,				
At the end of the Module 1, students will be able to: . understand the different phases involved in Total Quality Management.[BT-2] 2. Identify suitable Barriers to implement Total Quality Management . [BT-3] 3. Explain the tools and applications of Total Quality Management.[BT-2]				
MODULE -2	Quality measurement systems	8h		
Process management- Quality measurement systems (QMS) – developing and implementing QMS – nonconformance database- TQM tools & techniques- 7 QC tools- 7 New QC tools. Customer satisfaction - Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention,				

At the end of the Module 2, students will be able to:

- 1. Define the requirements of the process management. .[BT-1]
- 2. Identify suitable tools & techniques of TQM.[BT-3]

Evaluate the qualitative parameters for Continuous Process Improvement.[BT-5]

м	ດເ	ווכ	I F	-3
111	U	JU	LC.	-5

#### **Failure Analysis**

8h

System failure analysis approach – flow chart – fault tree analysis – failure mode assessment and assignment matrix – organizing failure mode analysis – pedigree analysis. Quality circles – organization – focus team approach – statistical process control – process chart – Ishikawa diagram – preparing and using control charts.

At the end of the Module 3, students will be able to:

- 1. Identify the basic issues in System failure analysis approach.[BT-3]
- 2. Illustrate the importance of organizing failure mode analysis . .[BT-2]

Demonstrate the knowledge of Statistical process control charts in industry .[BT-2]

MODULE-4	Quality Function Development	8h		
Quality Function Development (QFD) – elements of QFD – benchmarking-Types- Advantages & limitations of benchmarking – Taguchi Analysis – loss function - Taguchi design of experiments. Poka- yoke, Kaizen, Deming cycle. Total Productive Maintenance (TPM) - Concept, Improvement Needs,				
<ul> <li>At the end of the Module 4, students will be able to:</li> <li>1. Understand the elements of Quality Function Development [BT-2]</li> <li>2. Explain the concept of Taguchi analysis. [BT-2]</li> <li>3. Define the stages of improvements with Failure Modes and Effects Analysis (FMEA) - [BT-1]</li> </ul>				
MODULE-5	Lean Management	8h		

Lean Management, philosophy and creation of lean enterprise, JIT concepts-Kanban

System-Elements of total quality management,

At the end of the Module 5, students will be able to:

- 1. Explain the Need for implement of ISO 9000:2000 Quality System in industries .[BT-2]
- 2. Apply the test cases for the given problem using quality control techniques. [BT-3]
- 3. Understand the elements of Implementation of Quality System.[BT-2]

MODULE-6	TQM Approaches	8h

Value improvement elements – value improvement assault – supplier teaming. Business process reengineering & elements of Supply chain management. Six sigma approach – application of six sigma approach to various industrial situations

Total hours: 48 hours

# Term work:

1.planning to visit local industries and study various quality control techniques and submit Detailed Report.

2) Assignment 1. Explain TQM tools & techniques used in engineering institutions

3.case study on applications of TQM tools in engineering colleges to solve various problems

4. Assignment 2: how to implement six sigma approach to various industrial situations

Content beyond syllabus: 1. Modern organization structures 2. Software used to implement TQM

## Self-Study:

Contents to promote self-Learning:

Торіс	Reference
Principles of TQM	<u>https://nptel.ac.in/courses/110/104/110</u> <u>104080/</u>
TQM tools & techniques	http://ecoursesonline.iasri.res.in/mod/p age/view.php?id=5318
organizing failure mode analysis	https://asq.org/quality-resources/fmea
ISO 9000:2000 Quality System	https://www.iso.org/standard/29280.ht ml
Six sigma approach	https://study.com/academy/lesson/six- sigma-quality-control-improvement.html
elements of Supply chain management	https://www.redlinegroup.com/insights/ what-are-the-four-elements-of-supply- chain-management-91061613544

## Text Book(s):

1. Besterfield D.H. et al., Total quality Management, 3rd ed., Pearson Education Asia, 2006. 2 Total Quality Management, D.R.Kiran, BS Publications, 2016

- 3. Janakiraman B. and Gopal R.K., Total Quality Management, Prentice Hall India, 2006.
- 4. Suganthi L. and Samuel A., Total Quality Management, Prentice Hall India, 2006.

#### **Reference Book(s):**

1. Evans J.R. and Lindsay W.M., The management and Control of Quality, 8th ed., first Indian edition, Cengage Learning, 2012

2.Feigenbaum.A.V. "Total Quality Management, McGraw Hill, 1991.

3.Oakland.J.S. "Total Quality Management Butterworth - Hcinemann Ltd., Oxford. 1989.

4.Narayana V. and Sreenivasan, N.S. Quality Management - Concepts and Tasks, New AgeInternational 1996.

5.Zeiri. "Total Quality Management for Engineers Wood Head Publishers, 1991

#### **Online Resources:**

- 1. <u>https://www.youtube.com/watch?v=yWIAOFs04go</u>
- 2. <u>https://www.youtube.com/watch?v=i-KXkLBnFEU</u>
- 3. <a href="https://www.youtube.com/watch?v=gwHngq4Bw0w">https://www.youtube.com/watch?v=gwHngq4Bw0w</a>
- 4. <u>https://www.youtube.com/watch?v=wEBPVQ7W2wg</u>

#### Web References:

1<u>https://nptel.ac.in/courses/110/104/110104080/</u>

2.<u>https://asq.org/quality-resources/fmea</u>

3. <u>https://www.iso.org/standard/29280.html</u>

4. https://study.com/academy/lesson/six-sigma-quality-control-improvement.html